令和4年12月26日 公表分

日本海溝・千島海溝沿いの巨大地震の被害想定項目及び手法の概要

建物被害、人的被害、生活への影響 インフラ・ライフライン被害

北海道防災会議地震火山対策部会地震専門委員会 地震防災対策における減災目標設定に関する ワーキンググループ

被害想定項目一覧

1. 建物被害

地震火災による被害、 津波火災による被害、津波による被害(流氷の漂着を考慮)、 屋外落下物の発生

2. 人的被害

地震火災による被害、屋外落下物の発生、建物被害に伴う要救助者(自力脱出困難者)、 津波被害による要救助者

3. 生活への影響

避難者数、要配慮者数、医療機能、エレベータ内閉じ込め

4. インフラ・ライフライン被害

道路・橋梁、港湾、上水道、下水道、電力

1 建物被害

1.1 地震火災による被害

(1) 出火

○基本的な考え方

- ・出火要因の多くを占める火気器具、電気関係からの出火を取り扱う。また、停電時には電気関係からの出火はなく、停電復旧後に出火することも考えられるが、ここでは保守側の観点から、電気関係からの出火も地震直後に発生するものとして考える。
- ·①建物倒壊しない場合の火気器具・電熱器具からの出火、②建物 倒壊した場合の火気器具・電熱器具からの出火、③電気機器・配 線からの出火の3つに分けて出火率を設定する。
- ・建物倒壊しない場合の出火は、震度別・用途別・季節時間帯別の 全出火率を設定し、算定する。
- ・震度別の初期消火成功率を考慮して炎上出火件数を算定する。

○今回想定で採用する手法

全出火件数=震度別用途別出火率×震度別用途別対象物数 炎上出火件数=(1-初期消火成功率)×全出火件数

①建物倒壊しない場合の火気器具・電熱器具からの出火

冬・深夜	震度5弱	震度5強	震度6弱	震度6強	震度7
飲食店	0.0003%	0.0009%	0.0047%	0.0188%	0.066%
物販店	0.0001%	0.0004%	0.0013%	0.0059%	0.051%
病院	0.0002%	0.0004%	0.0014%	0.0075%	0.118%
診療所	0.0000%	0.0002%	0.0005%	0.0018%	0.007%
事務所等その他事業所	0.0000%	0.0001%	0.0004%	0.0020%	0.011%
住宅・共同住宅	0.0002%	0.0006%	0.0021%	0.0072%	0.026%
夏・12時	震度5弱	震度5強	震度6弱	震度6強	震度7
飲食店	0.0029%	0.0076%	0.0346%	0.1152%	0.331%
物販店	0.0005%	0.0015%	0.0071%	0.0253%	0.123%
病院	0.0009%	0.0016%	0.0070%	0.0296%	0.313%
診療所	0.0004%	0.0004%	0.0016%	0.0050%	0.023%
事務所等その他事業所	0.0005%	0.0017%	0.0083%	0.0313%	0.183%
住宅・共同住宅	0.0003%	0.0003%	0.0013%	0.0043%	0.021%
冬・18時	震度5弱	震度5強	震度6弱	震度6強	震度7
飲食店	0.0047%	0.0157%	0.0541%	0.1657%	0.509%
物販店	0.0007%	0.0022%	0.0085%	0.0302%	0.158%
病院	0.0008%	0.0017%	0.0072%	0.0372%	0.529%
診療所	0.0004%	0.0010%	0.0036%	0.0130%	0.041%
事務所等その他事業所	0.0003%	0.0012%	0.0052%	0.0216%	0.177%
住宅・共同住宅	0.0010%	0.0034%	0.0109%	0.0351%	0.115%

- ②建物倒壊した場合の火気器具・電熱器具からの出火
- ・阪神・淡路大震災時の事例から、冬における倒壊建物1棟あたり出火率を0.0449%とし、さらに時刻別に補正する。
- ・暖房器具類を使わない夏の場合には、倒壊建物1棟あたり出 火率を0.0286%とする。
- ·時刻補正係数は1.0(深夜)、2.2(12時)、3.4(18時)とする。

建物倒壊した場合の全出火件数

- =建物倒壊棟数
- ×季節時間帯別の倒壊建物1棟あたり出火率 ここで、季節時間帯別の倒壊建物1棟あたり出火率: 0.0449%(冬深夜)、0.0629%(夏12時)、0.153%(冬18時)

③電気機器・配線からの出火

·電気機器・配線からの出火は建物全壊の影響を強く受ける と考え、全壊率との関係で設定する。

電気機器からの出火件数 = 0.044%×全壊棟数配線からの出火件数 = 0.030%×全壊棟数

○初期消火成功率

·東京消防庁出火危険度測定(第8回、平成23年)における 住宅の初期消火成功率を適用する。

震度	6 弱以下	6強	7
初期消火成功率	6 7 %	3 0 %	15%

·なお、感震ブレーカー設置率国地域差が大きいことが想定されることから、ここでは感電ブレーカーの設置は考慮しないものとする。

1. 建物被害

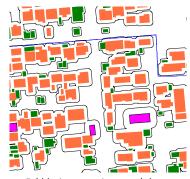
- 1.1 地震火災による被害(続き)
- (2)消防運用

○基本的な考え方

- ·現況の消防力と阪神・淡路大震災での消火実績等をもとにしたマクロ式を適用するものとする。
- ·消防ポンプ自動車数、小型動力ポンプ数及び消防水利数をもとに、消防本部・組合ごとに消火可能件数を算定する。

○今回想定で採用する手法

- ・消火可能件数(発災直後) =
 0.3×(消防ポンプ自動車数/2+小型動力ポンプ数/4)
 × {1-(1-61,544/市街地面積(㎡))^{水利数}}
 ・残火災件数 = 炎上出火件数—消火可能火災件数
- •各消防本部・組合について求めた消火可能件数(発災直後; 1時間後)と、想定される炎上出火件数を比較し、消火されなかった火災が延焼拡大すると考え、残火災件数(延焼拡大件数)を求めることとする。
- ・上式は、阪神・淡路大震災(平均風速約3m/s)のデータに 基づき、消防運用による消火可能件数をポンプ車数や消防 水利数を用いて表現したものである。


(3)延焼

○基本的な考え方

- ・延焼クラスター※に基づく地震火災リスク算定手法(加藤ら、 2006)を用いる。本手法は、建物単体のデジタルマップを用いており、市街地の空間特性をよく反映したものである。
- ※延焼クラスター(延焼運命共同体)とは、物構造から延焼 限界距離を求め、この距離内に連担する建物群を一体的に延 焼する可能性のある塊としてみなしたもの

○今回想定で採用する手法

- •防運用の結果、消火することができなかった残火災件数を用いて、 1棟あたりの残火災件数期待値 (件/棟)を求め、それに対して 延焼クラスターデータベースを適用し、焼失棟数期待値を算定。
- ・延焼は建物密度の高い地域において発生すると想定し、ここでは平成27年度国勢調査による人口集中地区(DID)を含む都市計画区域(ゾーン区域)を選定

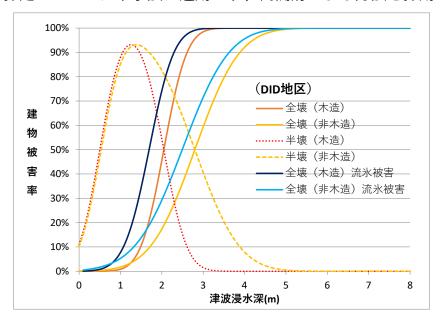
延焼クラスターの例

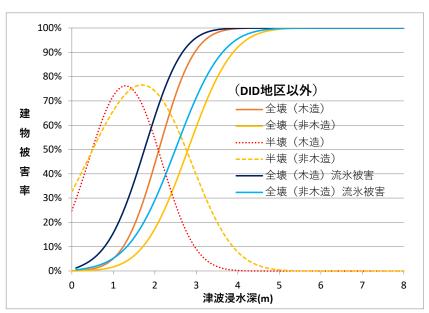
- •他の市町村は、基本的に延焼しないとし、炎上出火件数をそのまま焼失棟数とする。
- ·各建物の焼失確率 = $1 e \times p$ ($クラスター内建物棟数 \times クラスター内建物の出火確率の平気インチ)$
- ·焼失棟数 = ∑集計単位の建物の焼失確率

1. 建物被害

1. 1 津波による被害

○基本的な考え方


(津波による全壊・半壊棟数) = (構造別建物数)×(津波浸水深ごとの建物被害率)


・人口集中地区とそれ以外の地区で浸水深別・建物構造別被害率を分析し、浸水深ごとに被害率を設定して算出・寒冷期の流氷漂着地域では、流氷により建物被害が増大する可能性がある。1952年十勝沖地震の被害を参考に、流氷がある場合の被害率曲線を別途設定。対象地域は、中央防災会議防災対策実行会議日本海溝・千島海溝沿いの巨大地震対策検討ワーキンググループによる「日本海溝・千島海溝沿いの巨大地震の被害想定項目及び手法の概要」で示された1981年~2010年の期間における海氷出現率から、海氷が過去に出現した振興局を単位としてこれを適用し、十勝・釧路・根室の(総合)振興局管内とする。

○今回想定で採用する手法

・津波浸水深ごとの建物被害率の関係を用いて建物構造別に全壊棟数・半壊棟数を算出。

·流氷を伴う建物被害は、寒地土木研究所が提案した流氷の衝突力を考慮した力(衝突力と水による抗力との合力)に等価な流氷がない場合の抗力に相当する浸水深から(流氷がない元の被害関数利用)被害率を算定し、これを流氷ありの被害関数とする。なお衝突力の算定式に含まれるパラメータ(不確定要素)は1952年十勝沖地震の被害率を根拠に推定。また半壊率の算定については本手法は適用せず、内閣府による方法を採用

- 1. 建物被害
- 1.3 津波火災による被害

(津波による出火件数) = (①車両火災件数) + (②その他の火災件数)

- ①車両火災件数:浸水建物数、世帯当たり所有車台数より推計
- ②その他の火災件数:浸水建物数、プロパン使用率より推計

·東日本大震災で発生した津波火災の実績に基づいて、津波による出火件数を定量的に推計する。

○今回想定で採用する手法

- ●廣井(2014)※が示した下記の手法によって津波による出火件数を推計する。
- •「車両からの出火による津波火災」と「車両火災以外の津波火災」は発生メカニズムが異なるため、 出火件数を別々に算出して合算する。
- ●東日本大震災の市町村別発生実績から推定された推計式は以下の通りである。

(津波火災件数) = (①車両火災件数) + (②その他の火災件数)

- (①車両火災件数) = (世帯当たり所有車台数) × (浸水建物数) × 0.000024 0.798
- (②その他の火災件数) = (浸水建物数) × 0.000264 + (プロパン使用率) × 1.080

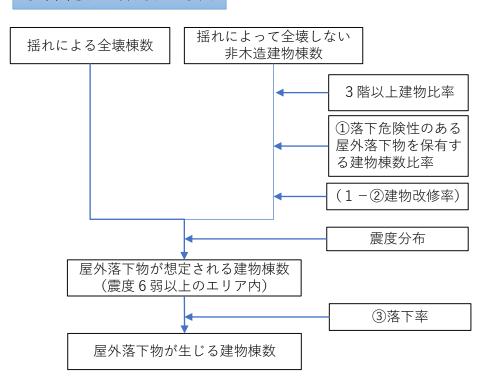
※ 廣井悠. 津波火災に関する東日本大震災を対象とした質問紙調査の報告と出火件数予測手法の提案. 地域安全学会論文集(24). pp.111-121. 2014

1 建物被害

1 4 屋外落下物の発生

○基本的な考え方

(屋外落下物が生じる建物棟数)


- = (屋外落下物が想定される建物棟数)×(落下率)
- = { (揺れによる全壊棟数) + (揺れによって全壊しない非木造建物棟数) × (落下物が発生する危険性のある棟数比率) } × (落下率)
- ※屋外落下物は震度6弱以上のエリアで発生しうるものと想定
- 東京都(H9)を参考に、全壊する建物及び震度6弱以上の地域における3階建て以上の非木造建物のうち落下危険物を有する建物から、落下物の発生が想定される建物棟数を算定。
- ●揺れによって全壊する建物については、すべての建物が落下物の発生が想定されるものとする。
- •揺れによって全壊しない建物のうち落下が想定される建物 棟数は、震度6弱以上のエリア内の3階以上の非木造建物 棟数に、落下物を保有する建物棟数比率と安全化指導実施 による建物改修率を掛けることで算定

①落下危険性のある屋外落下物を保有する建物棟数比率

•屋外落下物を保有する建物棟数比率は、地域によって大きな違いがないと想定されることから東京都の調査結果(東京都(H9))をもとに、対象となる建物の築年別に設定。

建築年代	飛散物 (窓ガラス、壁面等)	非飛散物 (吊り看板等)
~昭和45年	30%	17%
昭和46年~55年	6%	8%
昭和56年~	0%	3%

○今回想定で採用する手法

②建物改修率

• 建物改修率には、東京都 (H9) で用いている平均改修率 87%を用いる。

③落下率

•落下物の発生が想定される建物のうち落下が生じる建物の割合(落下率)には、東京都(H9)で設定したブロック塀の被害率と同じ式を用いる。

(落下率) (%) = $-12.6 + 0.07 \times$ (地表最大加速度) (gal)

2. 1 火災による被害

○基本的な考え方

(火災による死者数)

- = (炎上出火家屋内から逃げ遅れた死者数)
- + (閉込めによる死者数) + (延焼火災による死者数) (火災による負傷者数)
- = (炎上出火家屋内から逃げ遅れた負傷者数)
- + (延焼火災による負傷者数)
- ※発生時間帯別の屋内滞留人口を考慮して補正

·次の3つの火災による死者発生シナリオに基づき想定する。

死者発生のシナリオ	備考
a)炎上出火家屋内からの逃げ遅れ	出火直後:突然の出火により逃げ遅れた人 (揺れによる建物倒壊を伴わな い)
b)倒壊後に焼失した 家屋内の救出困難者 (生き埋め等)	出火直後:揺れによる建物被害で建物内に 閉じ込められた後に出火し、逃げ られない人
	延焼中:揺れによる建物被害で建物内に閉 じ込められた後に延焼が及び、逃 げられない人
c)延焼拡大時の逃げ まどい	延焼中:建物内には閉じ込められていないが、避難にとまどっている間に延 焼が拡大し、巻き込まれて焼死す る人

2. 1 火災による被害(続き)

○今回想定で採用する手法

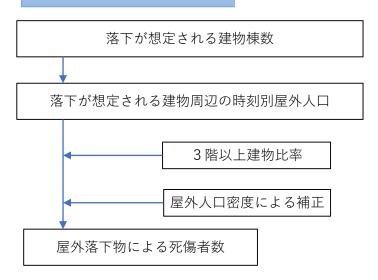
·東日本大震災における火災による死傷者は少ないと考えられるため、他の既往地震・大火事例データを基にした手法を用いる。

①死者数

- a) 炎上出火家屋内からの逃げ遅れ
 - (炎上出火家屋内から逃げ遅れた死者数) = (死者発生率0.046) ×出火件数×(屋内滞留人口比率)
 - ※死者発生率:0.046は、平成17年~22年の5年間の全国における1建物出火あたりの死者数
 - ※ここで(屋内滞留人口比率)=(発生時刻の屋内滞留人口)÷(屋内滞留人口の24時間平均)
- b) 倒壊後に焼失した家屋内の救出困難者
 - (閉じ込めによる死者数) = (全壊かつ焼失家屋内の救出困難な人) × (1-生存救出率0.387)
 - ※(全壊かつ焼失家屋内の救出困難な人)=(1-早期救出可能な割合0.72)×(全壊かつ焼失家屋内の要救助者数)
 - ※(全壊かつ焼失家屋内の要救助者数)=(自力脱出困難者発生率0.117)
 - ×(全壊率)×(全壊かつ焼失棟数/全壊棟数)×(発生時刻の出火家屋内滞留人口)
- c) 延焼拡大時の逃げまどい
 - (延焼火災による死者数) = 0.0218×(焼失棟数)×(屋内滞留人口比率)
 - ※ここで(屋内滞留人口比率)=(発生時刻の屋内滞留人口)÷(屋内滞留人口の24時間平均)

②負傷者数

- a) 炎上出火家屋内からの逃げ遅れ
 - (出火直後の火災による重傷者数) = 0.075×出火件数×(屋内滞留人口比率)
 - (出火直後の火災による軽傷者数) = 0.187×出火件数× (屋内滞留人口比率)
 - ※ここで(屋内滞留人口比率)=(発生時刻の屋内滞留人口)÷(屋内滞留人口の24時間平均)
- b) 延焼拡大時の逃げまどい
 - (延焼火災による重傷者数) = 0.053×0.1308×焼失棟数×(屋内滞留人口比率)
 - (延焼火災による軽傷者数) = 0.137×0.1308×焼失棟数×(屋内滞留人口比率)
 - ※ここで(屋内滞留人口比率)=(発生時刻の屋内滞留人口)÷(屋内滞留人口の24時間平均)


2.2 屋外落下物による被害

○基本的な考え方

((屋外落下物による死傷者数)

- = (落下が想定される建物周辺の屋外人口) × (死傷者率) ※発生時間帯別の屋外人口を考慮して補正
- ・屋外落下物については、宮城県沖地震(1978)時の落下物による被害事例に基づく、屋外落下物及び窓ガラスの屋外落下による死傷者率を設定する。

○今回想定で採用する手法

• (死傷者数) = (死傷者率) × { (市区町村別の落下危険性のある落下物を保有する建物棟数) / (市区町村別建物棟数) × (市区町村別時刻別移動者数) } × ((市区町村別屋外人口密度) /1689.16 (人/km2))

屋外落下物による死傷者率(=死傷者数÷屋外人口)

	死者率	負傷者率	重傷者率
震度7	0.00504%	1.69%	0.0816%
震度6強	0.00388%	1.21%	0.0624%
震度 6 弱	0.00239%	0.7000%	0.0383%
震度5強	0.000604%	0.0893%	0.00945%
震度5弱	0%	0%	0%
震度4以下	0%	0%	0%

[・]出典)火災予防審議会・東京消防庁「地震時における人口密集地域の災害危険要因の解明と消防対策について」(平成17年)における屋外落下物(壁面落下)と屋外ガラス被害による死者率の合算値

[※]震度7を計測震度6.5相当、震度6強以下を各震度階の計測震度の中間値 として内挿補間する。

- 2. 3 揺れによる建物被害に伴う要救助者(自力脱出困難者)
 - ・木造建物と非木造建物の別で建物倒壊による自力脱出困難者数を想定する。
 - (1) 木造建物

○基本的な考え方

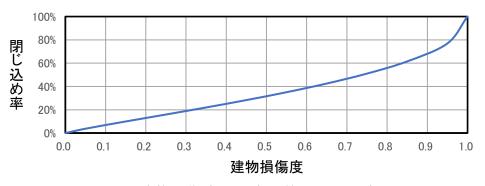
(自力脱出困難者数) = (時刻別の木造滞留人口)×(建物損傷度別の被害率)×(建物損傷度別の身体的閉じ込め率)

○今回想定で採用する手法

・木造建物の倒壊による自力脱出困難者の想定では、 村上・竹田による阪神・淡路大震災の身体的閉じ込 め率のデータから、建物損傷度毎の閉じ込め率を下 記の表のように設定した。

被害程度		全 壊	
ダメージレベル	D 4	D 5	D 6
建物損傷度	0.6~0.8	0.8~0.9	0.9~1.0
閉じ込め率	7.9%	7.9%	27.7%

【自力脱出困難者の想定のフロー】


(参考) 家具転倒などによる空間的閉じ込めによる脱出困難者

家具の転倒・散乱などにより出口までの歩行が困難な状況(空間的閉じ込め)を理由とした自力脱出困難者について、 角田・岡田らが村上・竹田の調査データに基づいて設定した木造建物の建物損傷度と閉じ込め率の関係を下図に示す。

○基本的な考え方

(家具転倒などによる自力脱出困難者数)

= (時刻別の木造滞留人口)×(建物損傷度別の被害率)×(建物損傷度別の空間的閉じ込め率)

建物損傷度別の空間的閉じ込め率

閉じ込めの定義(村上・竹田)

	状況
空間的閉じ込め	①家具等の転倒・散乱により、出口までの歩行が困難 ②家屋の変形により、ドアなどが開かず出口までの歩行が困難 ③柱や梁などの落下により出口までの歩行が困難
身体的閉じ込め	①~③の状況に加え、柱や梁などの落下によって身体が拘束された場合

- 2. 人的被害
- 2.4 津波被害に伴う要救助者

(要救助者数)

= (中高層階滞留者のうち、最大浸水深より高い階の滞留者)

(要捜索者数(最大)) = (津波による死傷者数)

- ·津波の最大浸水深より高い階に滞留する者を要救助者として推定する。
- ・また、津波による死傷者を初期の要捜索需要と考える。

○今回想定で採用する手法

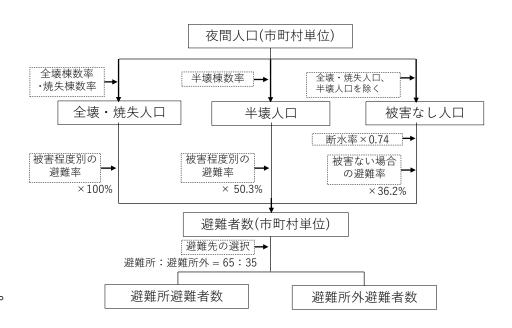
①要救助者数

・津波による人的被害の想定で切迫避難する人については、津波の最大浸水深よりも高い階の居住者はその場にとどまることを考慮しており、その結果、中高層階に滞留する人が要救助対象となると考え、次表の考え方に沿って、要救助者数を算出する。ただし、最大浸水深が1m未満の場合には中高層階に滞留した人でも自力で脱出が可能であると考え、中高層階滞留に伴う要救助者は最大浸水深1m以上の地域で発生するものとする。

最大浸水深	中高層階滞留に伴う要救助者の設定の考え方
1m未満	(自力脱出可能とみなす)
1m以上6m未満	3階以上の滞留者が要救助対象
6m以上15m未満	6階以上の滞留者が要救助対象
15m 以上	11階以上の滞留者が要救助対象

- 3. 生活への影響
- 3. 1 避難者数

(内陸部(津波浸水域外)の避難者数) = (全半壊建物からの避難者数) + (ライフライン支障による避難者数)


(津波浸水域における避難者数) (発生後1日後まで) :浸水域内の全員が避難

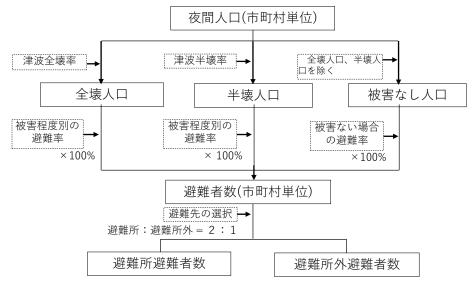
(発生後2日目以降):内陸部(津波浸水域外)と同様に設定

○今回想定で採用する手法

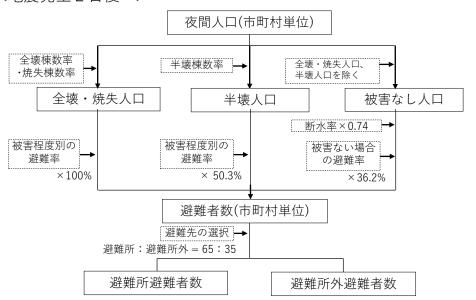
- ・津波浸水域と津波被害の影響を受けない範囲(内陸部)の避難者数を区分して算出する。
- (1) 内陸部(津波浸水域外)の避難者数
- ・内陸部避難者数は、被害程度別に避難率を設定する方法で計算する。
- ・室崎・流郷による兵庫県南部地震における住民アンケート結果から、避難率は全壊が100%、半壊が50.3%、被害軽微・なしが36.2%、避難所へ避難する人と避難所以外へ避難する人の割合は65:35と設定する。
- ・住宅に被害が生じていない世帯の避難者数は、断水を指標として推定する。ただし飲料水の家庭内備蓄の割合26%を考慮し、断水率を0.74倍に補正する。
- ※被害程度別の人口は、揺れ・液状化・急傾斜地・ 火災被害の重複を除去して推計する。

【内陸部(津波浸水域外)の避難者数の想定フロー】

3. 生活への影響


3.1 避難者数(続き)

(2) 津波浸水域における避難者数


- ・地震発生直後~1日後は、津波によって半壊以上 の被害を受けた建物の居住者は、屋内の浸水などで 帰宅できないため、全員が避難するものとする。
- ・津波被害が軽微あるいはない場合でも、沿岸部で は避難指示などの発令が想定されるため、全員が避 難するものとする。
- ・東日本大震災における避難の実態から、2/3が避難所に避難するものと想定する。
- ・地震発生2日目以降は、内陸部(津波浸水域外)の避難者数の考え方と同じとする。
- ・ただし、被害程度別の人口は、揺れ・液状化・急傾斜地・火災被害に加えて、津波被害を考慮する。

【津波浸水域における避難者数の想定フロー】

<地震発生直後~1日後>

<地震発生2日後~>

3. 生活への影響

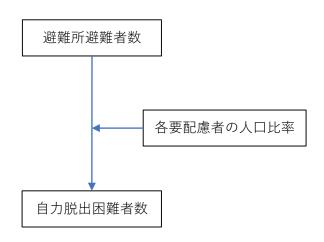
(参考) 津波浸水地域における人的被害を除いた地震発生直後の想定避難者

○基本的な考え方

(津波浸水域における避難者) = (浸水域内人口) - (死者数) - (重傷者数)

○今回想定で採用する手法

- ・津波浸水地域における避難者数を算出する。なお、浸水域内人口は避難指示は想定される浸水域内全域に発令されることが考えられるため、各津波モデルの最大範囲を合わせたものを津波浸水域とする。
- ①全壊建物、半壊建物
- ・全員が避難する。※半壊建物も、屋内への漂流物等により、自宅では生活不可
- ②一部損壊以下の被害建物(床下浸水を含む)
- ・津波警報に伴う避難指示により全員が避難する。
- ③避難所避難者と避難所外避難者・疎開者等
- ·避難所避難者:避難所外避難者=2:1
- ④死者・重傷者は避難者数から除く


- 3. 生活への影響
- 3. 2 要配慮者

(避難所に避難する要配慮者数)

- = (避難所避難者数) × (各要配慮者の人口比率) ※避難所避難者数の内数として算出
- ○今回想定で採用する手法
 - ・対象とする要配慮者
 - 1.65歳以上の単身高齢者
 - 2.5歳未満の乳幼児
 - 3. 身体障害者
 - 4. 知的障害者
 - 5. 精神障害者
 - 6. 要介護認定者(要支援者を除く)
 - 7. 難病患者
 - 8. 妊産婦
 - 9. 外国人

- ・避難所避難者数の内訳として、人口比率より、避難所に
- 避難する要配慮者数を算出する。 ・避難所での対応等の参考に資するよう、幅広い要配慮者 を対象に算出するものとし、重複の除去は行わない。

【避難所に避難する要配慮者数(全体の内数)の想定フロー】

- 3. 生活への影響
- 3.3 医療機能

(被災した医療機関の転院患者数)

= (入院患者数) × (医療機関建物被害、ライフライン機能低下による 医療機能低下率) × (転院を要する者の割合)

(医療対応力不足数(入院))

- = 「需要量(平時の需要+重傷者+病院での死者)」- 「医療供給力」 (医療対応力不足数(外来))
- =「需要量(平時の需要+軽傷者)| 「医療供給力|

- ·医療機関の施設の損壊、ライフラインの途絶により転院を要する患者数を算出する。
- ・新規の入院需要(重傷者数+医療機関で結果的に亡くなる者+被災した医療機関からの転院患者数)及び外来需要(軽傷者数)から医療機関の受入れ許容量を差し引いたときの医療対応力不足数を算出する。

○今回想定で採用する手法

- 被災した医療機関からの転院患者数を以下の手法により算出する。
- ・ 平常時在院患者数をベースに、医療機関建物被害率、ライフライン機能低下による医療機能低下率、転院を要する者の 割合を乗じて算出する。
- ・ 医療機関建物被害率は、全壊・焼失率 + 1/2×半壊率とする。
- ・ライフライン機能低下による医療機能低下率は、阪神・淡路大震災の事例データを参考とし、断水あるいは停電した場合、震度6強以上地域では医療機能の60%がダウンし、それ以外の地域では30%がダウンすると仮定する。
- ・ 転院を要する者の割合は50%と設定する。
- ○医療対応力不足数を以下の手法により算出する。
- ・ 医療対応力不足数(入院)は重傷者及び一部の死者への対応、医療対応力不足数(外来)は軽傷者への外来対応の医療 ポテンシャルの過不足数を求める。
- ・ 入院需要は、震災後の新規入院需要発生数として、重傷者 + 医療機関で結果的に亡くなる者(全死者数の10%にあたる) + 被災した医療機関からの転院患者の数を想定する。外来需要は、軽傷者を想定する。
- ・医療供給数は、医療機関の病床数、外来診療数をベースとして、医療機関建物被害率(全壊・焼失率 + 1/2×半壊率)、空床率、ライフライン機能低下による医療機能低下率を乗じて算出する。
- ・需要数と供給数との差より、不足数を算出する。

3. 生活への影響

- 3.4 エレベータ内閉じ込め
- ・地震の揺れ・停電に伴うエレベータ閉じ込めを検討する。
- ・エレベータ閉じ込め者数、閉じ込めにつながり得るエレベータ 停止が発生する建物棟数及びエレベータ台数を算出する。

○基本的な考え方

(閉じ込め者数、閉じ込めにつながりうる棟数、エレベータ台数) = (A:地震時管制運転中の安全装置優先作動に伴うエレベータ停止によるもの) + (B:揺れによる故障等に伴うエレベータ停止によるもの) + (C:地域の停電に伴うエレベータ停止によるもの)

○今回想定で採用する手法

左記のA~Cに示した閉じ込め事故に関連する3つの被害事象を取り扱う。重複防止のため、被害事象A・B・Cの順に算定を行う。

4.1 道路

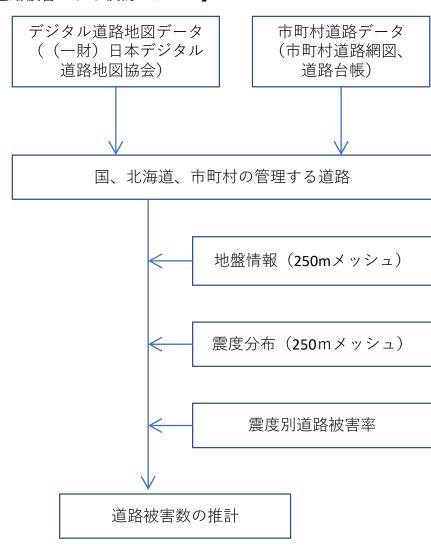
○基本的な考え方

道路データと震度分布との重ね合わせから、震度別被害率により道路被害延長を推計(埼玉県防災会議)

(道路の被害箇所数)

= (震度別・地盤種別別道路被害) × (道路延長)

·震度別・地盤種別道路被害率(箇所/km)


震度	地盤種別※				
反 反	1・2種	3種	4種		
7	0.11	0.16	0.25		
6 強	0.09	0.13	0.20		
6 弱	0.07	0.10	0.16		
5 強	0.05	0.07	0.12		
5弱	0.03	0.04	0.06		
~4	0.00	0.00	0.00		

※地盤種別は「道路橋被害示方書・同解説(1988)」の分類による。 ・地盤種別と地形分類との関係

地盤種類		地形分類
1種	第3紀以前の地盤 岩盤までの洪積層厚さが10m未満	古第三紀以前、新第三 紀
2種	岩盤までの洪積層厚さが10m以上 岩盤までの沖積層厚さが10m未満	第四紀火山、丘陵地、 ローム台地、砂礫台地
3種	沖積層厚さが10m以上25m未満で、かつ 軟弱層の厚さが5m未満	扇状地、砂州・砂丘
4種	上記以外の地盤	谷底平野、デルタ・後 背湿地

○今回想定で採用する手法

【道路被害による検討のフロー】

4.1 橋梁

○基本的な考え方

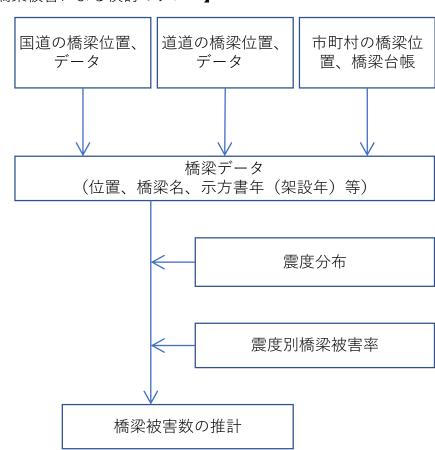
国道、道道、市町村道の橋梁データをもとに、橋梁の示方書 年と震度分布の関係から設定される被害率を掛け合わせて被 害箇所数を算出

(橋梁の被害箇所数)

= (橋梁の箇所数) × (被害率)

兵庫県南部地震(1995)の被災事例を基に示方書年別に設定 された通行支障(通行制限を指す)及び不通となる確率 (箇所/箇所)を設定している宮崎県(1997)の手法

・震度と橋梁被害率の関係


被害程度	通行支障(通行制限)		不通	
示方書年	1964年 1971年	1980年 1990年	1964年 1971年	1980年 1990年
震度5強以下	0.00	0.00	0.00	0.00
震度 6 弱	0.03	0.00	0.03	0.00
震度6強	0.13	0.02	0.12	0.00
震度7	0.14	0.04	0.14	0.02

※耐震化がなされた橋梁については1980年、1990年の被 害率を適用

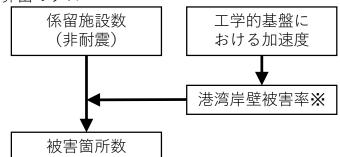
※架設年が不明な場合は最も被害の大きい示方書年を適用

○今回想定で採用する手法

【橋梁被害による検討のフロー】

4.2 港湾

○基本的な考え方


①揺れによる係留施設の被害

中央防災会議の手法と同様に、以下の式のとおり揺れによる係留施設の被害箇所数を算出する

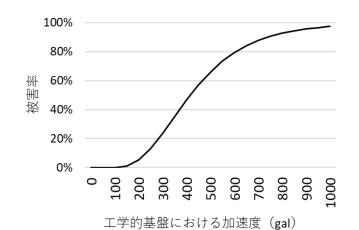
係留施設の被害箇所数=係留施設数(非耐震)×港湾岸壁被害率

○今回想定で採用する手法

•算出のフロー

I.係留施設数の算出 北海道開発局から提供を受けた各港湾の係留施設データによる 係留施設は「岸壁」と「その他係留施設」に分けて集計する

II.各港湾で最大となる加速度の算出 on Earthquake Engineering.


国土数値情報の港湾データに基づき各港湾の区域を特定する

各港湾の区域の海岸から1kmの範囲に含まれるメッシュの加速度のうち最大のものを当該港湾の加速度とする

Ⅲ.各港湾の係留施設の被害箇所数の算出各港湾の加速度を上記の関数に適用し、各港湾の港湾岸壁被害率を算出する各港湾の係留施設のバース数に港湾岸壁被害率を乗じて得られた値を被害箇所数とする

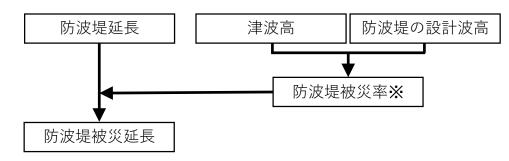
IV.被害箇所数の集計

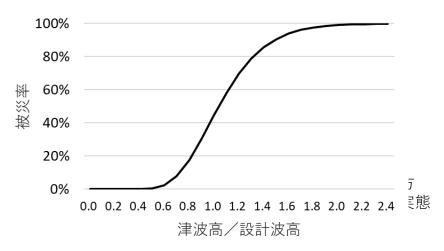
被害箇所数を岸壁・その他係留施設の別、港格(国際拠点・重要・地方)別、震源モデル別に集計する

※港湾岸壁被害率は、加速度と被害率の関係を 示したICHII (2004) の関数を用いる(上図)

出典: Koji ICHII(2004) Fragility Curves for Gravity-Type Quay Walls Based on Effective Stress Analyses. 13th World Conference on Earthquake Engineering.

- 4. インフラ・ライフライン被害
- 4.2 港湾 続き


②津波による防波堤の被害


中央防災会議の手法と同様に、以下の式のとおり津波による防波堤の被災延長を算出する

被災防波堤延長=防波堤延長×防波堤の津波高別被災率

○今回想定で採用する手法

•算出のフロー

- I.防波堤延長の算出 北海道開発局から提供を受けた各港湾の防波堤データによる
- Ⅱ.各港湾の津波高の算出

国土数値情報の港湾データに基づき各港湾の区域を特定する 各港湾の区域の海岸線の津波水位のうち最大のものを当該港湾の津波高とする

Ⅲ.各港湾の防波堤被災延長の算出

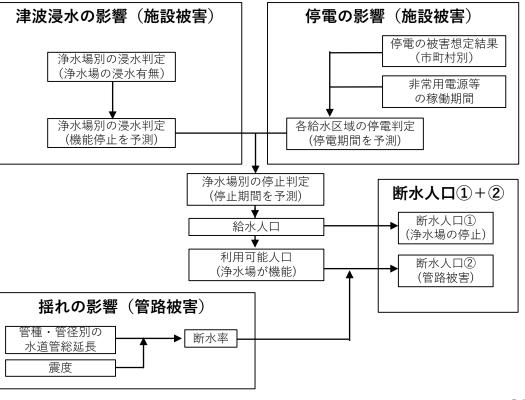
各港湾の津波高と防波堤の設計波高を上記の関数に適用し、防波堤被災率を算出する 各防波堤の延長に防波堤被災率を乗じて得られた値を被災延長とする

IV.被災延長の集計

防波堤被災延長を港格(国際拠点・重要・地方)別、震源モデル別に集計する

4. 3 上水道

○基本的な考え方


(断水人口) = (①施設被害による断水人口) + (②管路被害による断水人口)

- (①施設被害による断水人口) = (津波浸水・停電による浄水場停止が影響する人口)
- (②管路被害による断水人口) = (浄水場停止が影響しない人口) × (管路被害による断水率)

○今回想定で採用する手法

- ・津波浸水・停電・揺れによる影響を考慮して、断水人口を計算する。
- ・津波浸水の影響は、浄水場の浸水有無から機能停止を判定する。
- ・停電の影響は、市町村の停電の予測結果と非常用 電源の整備状況を考慮する。
- ・揺れによる管路被害は、管種・管軽別の被害率(丸山・山崎2009)を用いて算出する。
- ・管路被害による断水人口は、過去の地震の配水管の物的被害率と地震直後の断水率の関係から得られた川上の式(1996)を利用する。
- ・復旧日数は、埼玉県等で用いられている水道管の 管径別復旧効率と必要人員を利用して、管路被害箇 所数と動員可能な復旧作業員数から予測する手法を 用いる。

【地震・津波による断水人口の想定フロー】

4.3 上水道(続き)

○揺れによる管路被害箇所数

管路被害箇所数 $Nh = R \cdot L$ $R = R_1 \cdot C_1 \cdot C_2 \cdot C_3$

Nh:管路被害箇所数 R:被害率(箇所/km) R1:標準被害率(箇所/km)

 C_1 : 液状化係数 C_2 : 管種係数 C_3 : 管径係数 L: 管路延長 (km)

○ 管路被害による断水人口(直後、1日後、2日後)

地震発生直後の断水人口 y0 = H・1 / (1+0.0473・R^{-1.61}) 1日後の断水人口 y1 = H・1 / (1+0.307・R^{-1.17}) 2日後の断水人口 y2 = H・1 / (1+0.319・R^{-1.18}) y: 断水人口 H: 給水人口 R: 被害率(箇所/km)

○復旧日数

- ・復旧日数は、管径別に復旧に必要となる作業人員と1件当たりの作業時間を設定し、管路被害個所数を元に算出する。冬季の場合は、復旧効率が夏季の7割とする。
- ・作業人員は、胆振東部地震の傾向から3日目までは被災市町村の作業員とし、4日目から支援の作業員が加わると仮定する。
- ・被災市町村の作業員のすべてが復旧作業を行うことは難しいことから、作業員の1/4、1/2の数を想定する。復日支援の作業員は、上水道被害の想定されていない市町村の作業員数から設定する。
- ※津波浸水域に重なる管路は復旧困難なため、復旧日数の計算対象から除く
- ※作業員は、経済センサスの上水道業と管工事業の従業者数から設定

4.4 下水道

○基本的な考え方

地震動分布と液状化の分布などにより設定した管渠の管種別被害率から被害延長を求める手法(大規模地震による下水道被害想定検討委員会、2006)を採用

(下水道の管路被害延長Nd)

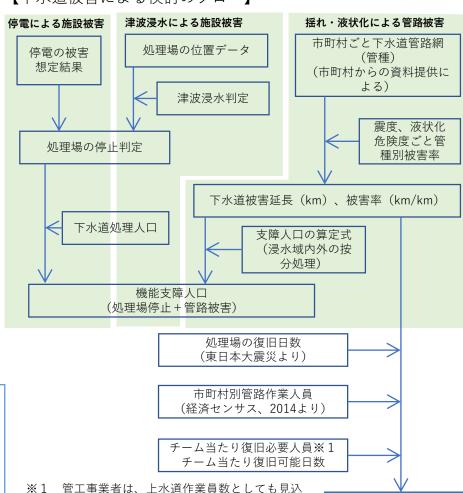
= (被害率R)×(管路延長L)

·下水道の管種別被害率R

		PL値		震度階級				
液状 管種 化危	液状 化危		PL] E	5弱	5強	6弱	6強	7
	険度		計測震度 基準値	4.75	5.25	5.75	6.25	6.75
塩ビ管・ 陶管	A~D	ALL		1.0%	2.3%	5.1%	11.3%	24.8%
	А	15 <pl< td=""><td>0.6%</td><td>1.3%</td><td>3.0%</td><td>6.5%</td><td>14.5%</td></pl<>		0.6%	1.3%	3.0%	6.5%	14.5%
その他	В	Ę	5 <pl≦15< td=""><td>0.5%</td><td>1.0%</td><td>2.2%</td><td>4.8%</td><td>10.7%</td></pl≦15<>	0.5%	1.0%	2.2%	4.8%	10.7%
の管	С		0 <pl≦5< td=""><td>0.4%</td><td>0.9%</td><td>2.0%</td><td>4.5%</td><td>9.8%</td></pl≦5<>	0.4%	0.9%	2.0%	4.5%	9.8%
	D		PL=0	0.4%	0.9%	1.9%	4.2%	9.2%

·機能支障人口

(機能支障人口)


- = (①施設被害による機能支障人口)
 - + (②管路被害による機能支障人口)
- (①施設被害による機能支障人口)
 - = (津波浸水・停電による処理場停止が影響する人口)
- (②管路被害による機能支障人口)
 - = (供給人口) × (被害率R)

•復旧日数

事前調査に1日、2日後から応急復旧作業が開始されるとし、作業効率は200m/班、必要作業員数は6人/班(東京都、1997)

○今回想定で採用する手法

【下水道被害による検討のフロー】

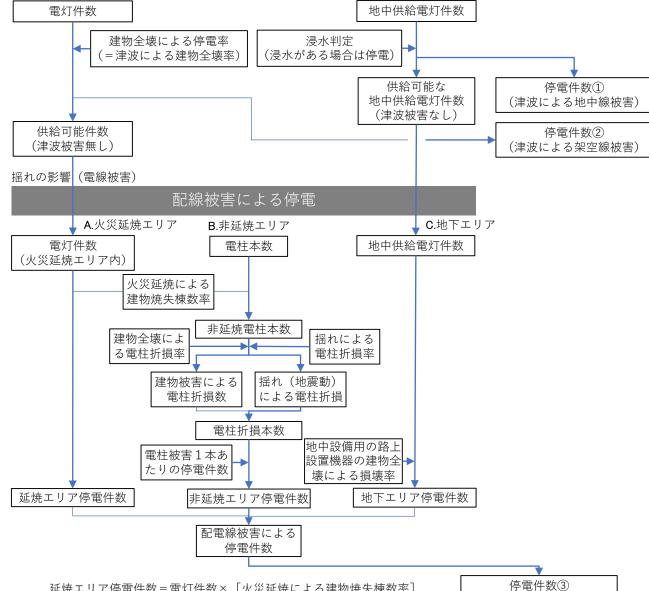
※1 管工事業者は、上水道作業員数としても見込んでいるが、復旧工事は基本的に上水道が優先され、 上水道の復旧後に下水道の復旧が戦略的に行われる と想定されるため、本想定では作業員の上下水道へ の配分は行っていない。

%2 作業員のうちすべてが災害後に作業を行うことは難しいことから、 総数のうち下水道の復旧に当たることができる割合を作業人員の1/4、 または1/2と想定した場合の復旧日数を算出する。

復旧日数※2

4.5 電力

○基本的な考え方


(停電軒数)

- (①津波による地中線被害)
- (②津波による架空線被害)
- (③火災・揺れ等による被害)

○今回想定で採用する手法

揺れ等による電線被害等から停電軒数を算出する。

津波浸水の影響(電線被害) 電灯件数

延焼エリア停電件数=電灯件数×「火災延焼による建物焼失棟数率] 非延焼電柱本数 = 電柱本数×(1-「火災延焼による建物焼失棟数率」)

(火災・揺れ等による被害)