資 料 編

1 物 理 調 査

(1) 水温調査 ア停船測定

(北海道実施分)

水 温

単位:℃

					1
水 深 (m)	第1四半期	第2四半期	第3四半期	第4四半期	過去の測定値の 範 囲 (S61.9~R2.3)
	, ,	, ,	,	,	
表層	$ 11.1 \sim 11.9 (11.5)$	$21.8 \sim 22.7 (22.3)$	$11.6 \sim 13.0 \ (12.4)$	$2.9 \sim 5.0 (3.9)$	$2.5 \sim 25.5$
1.0	$11.1 \sim 11.9 (11.4)$	$21.9 \sim 22.6 (22.3)$	$11.6 \sim 13.0 \ (12.5)$	$3.1 \sim 5.0 (3.9)$	$2.5 \sim 25.3$
2.0	$10.7 \sim 11.7 (11.3)$	$21.9 \sim 22.6 (22.2)$	$12.4 \sim 13.0 (12.7)$	$3.4 \sim 5.0 (4.1)$	$2.5 \sim 25.5$
3.0	$10.6 \sim 11.4 (11.1)$	$21.6 \sim 22.6 (22.2)$	$12.5 \sim 13.1 (12.8)$	$3.5 \sim 5.5 (4.3)$	$2.6 \sim 25.5$
4.0	$10.3 \sim 11.4 (10.9)$	$21.6 \sim 22.5 (22.1)$	$12.6 \sim 13.3 (12.8)$	$3.9 \sim 5.6 (4.5)$	$2.7 \sim 25.4$
5.0	$10.4 \sim 11.2 (10.6)$	$21.7 \sim 22.5 (22.1)$	$12.5 \sim 13.3 (12.9)$	$3.9 \sim 5.6 (4.7)$	$3.0 \sim 25.2$
6.0	$10.3 \sim 11.1 \ (10.5)$	$21.6 \sim 22.3 (22.0)$	$12.6 \sim 13.4 (13.0)$	$4.2 \sim 5.6 (4.8)$	$3.1 \sim 24.2$
7.0	$10.1 \sim 10.7 (10.4)$	$21.6 \sim 22.2 (22.0)$	$12.5 \sim 13.5 (13.1)$	$4.5 \sim 5.6 (4.9)$	$3.3 \sim 24.8$
8.0	$10.1 \sim 10.6 (10.3)$	$21.7 \sim 22.2 (21.9)$	$12.7 \sim 13.6 (13.1)$	$4.6 \sim 5.5 (5.0)$	$3.3 \sim 23.8$
9.0	$10.0 \sim 10.5 (10.3)$	$21.7 \sim 22.1 (21.9)$	$12.8 \sim 13.6 (13.2)$	$4.6 \sim 5.8 (5.1)$	$3.3 \sim 23.4$
10.0	$9.9 \sim 10.4 (10.1)$	$21.6 \sim 22.1 (21.9)$	$13.2 \sim 13.7 (13.3)$	$5.0 \sim 5.8 (5.4)$	$3.4 \sim 24.8$
15.0	$9.8 \sim 10.1 (9.8)$	$21.5 \sim 21.9 (21.7)$	$13.3 \sim 13.7 (13.4)$	$5.7 \sim 6.3 (5.9)$	$3.6 \sim 24.3$
20.0	$9.7 \sim 9.8 (9.7)$	$20.9 \sim 21.8 (21.5)$	$13.5 \sim 13.7 (13.6)$	$6.0 \sim 6.3 (6.1)$	$4.0 \sim 23.8$
25.0	$9.7 \sim 9.7 (9.7)$	$21.1 \sim 21.7 (21.4)$	$13.7 \sim 13.7 (13.7)$	$6.0 \sim 6.5 (6.2)$	$4.2 \sim 21.2$
30.0	$9.6 \sim 9.6 (9.6)$	$21.2 \sim 21.5 (21.3)$	$13.7 \sim 13.7 (13.7)$	$6.1 \sim 6.1 (6.1)$	$4.5 \sim 19.7$
35.0	$9.6 \sim 9.6 (9.6)$	$21.1 \sim 21.1 (21.1)$	~ ()	~ ()	$4.8 \sim 18.8$

塩 分

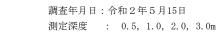
水深	第1四半期	第2四半期	第3四半期	第4四半期	過去の測定値の 範 囲
(m)	第 1 四 干 朔 	另 2 四 干 初	另 5 四 十 初	另4四十朔 	(H9. 4~R2. 3)
表層	$29.6 \sim 32.7 (31.8)$	$33.5 \sim 33.9 (33.8)$	$30.8 \sim 33.3 (32.3)$	$31.8 \sim 33.5 (32.7)$	$23.6 \sim 34.4$
1. 0			$32.0 \sim 33.3 (32.8)$		$25.1 \sim 34.1$
2.0			$32.5 \sim 33.4 (33.0)$		$27.0 \sim 34.4$
3. 0			$32.9 \sim 33.5 (33.1)$		$28.2 \sim 34.2$
4.0	$32.2 \sim 33.7 (33.1)$	$33.8 \sim 34.0 (33.8)$	$33.0 \sim 33.6 (33.2)$	$33.0 \sim 33.7 (33.2)$	$28.9 \sim 34.1$
5. 0	$32.8 \sim 33.7 (33.4)$	$33.8 \sim 34.0 \ (33.8)$	$33.0 \sim 33.6 (33.2)$	$33.1 \sim 33.7 (33.3)$	29.0 \sim 34.3
6.0	$33.0 \sim 33.8 (33.5)$	$33.8 \sim 34.0 (33.9)$	$33.0 \sim 33.7 (33.3)$	$33.2 \sim 33.7 (33.4)$	29.0 \sim 34.2
7. 0	$33.4 \sim 33.9 (33.6)$	$33.8 \sim 34.0 (33.9)$	$33.1 \sim 33.7 (33.4)$	$33.3 \sim 33.6 (33.4)$	$30.2 \sim 34.2$
8.0	$33.5 \sim 33.9 (33.7)$	$33.8 \sim 34.0 (33.9)$	$33.1 \sim 33.7 (33.4)$	$33.3 \sim 33.8 (33.5)$	$31.0 \sim 34.2$
9.0	$33.6 \sim 33.9 (33.7)$	$33.8 \sim 34.1 (33.9)$	$33.3 \sim 33.7 (33.5)$	$33.4 \sim 33.7 (33.5)$	$32.1 \sim 34.1$
10.0	$33.7 \sim 33.9 (33.8)$	$33.8 \sim 34.1 (33.9)$	$33.5 \sim 33.8 (33.6)$	$33.6 \sim 33.8 (33.6)$	$32.3 \sim 34.1$
15.0	$33.9 \sim 34.0 (33.9)$	$33.9 \sim 34.1 (34.0)$	$33.6 \sim 33.8 (33.7)$	$33.8 \sim 33.9 (33.8)$	$32.3 \sim 34.2$
20.0	$33.9 \sim 34.0 (33.9)$	$34.0 \sim 34.1 (34.0)$	$33.7 \sim 33.8 (33.7)$	$33.8 \sim 33.9 (33.8)$	$33.2 \sim 34.2$
25.0	$34.0 \sim 34.0 (34.0)$	$34.0 \sim 34.1 (34.0)$	$33.9 \sim 33.9 (33.9)$	$33.8 \sim 33.9 (33.8)$	$33.3 \sim 34.2$
30.0	$34.0 \sim 34.0 (34.0)$	$34.0 \sim 34.1 (34.0)$	$33.9 \sim 33.9 (33.9)$	$33.8 \sim 33.8 (33.8)$	33.5 \sim 34.2
35. 0	$34.0 \sim 34.0 (34.0)$	$34.1 \sim 34.1 (34.1)$	~ ()	~ ()	$33.5 \sim 34.2$

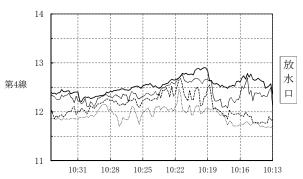
- (注1) ()内は平均値を示す。
- (注2) 水温の6.0、8.0、9.0m層は平成9年度第1四半期から測定を開始。
- (注3) 水温の25.0、30.0、35.0m層は平成18年度第3四半期から測定を開始。

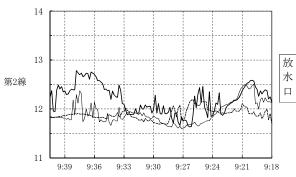
(北海道電力実施分)

水 温

単位:℃

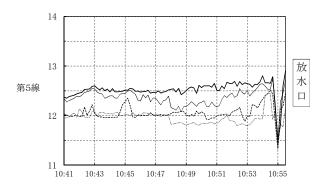

水深					過去の測定値の
(m)	第1四半期	第2四半期	第 3 四 半 期	第4四半期	範囲
(111)					(S61.9∼R2.3)
表層	$10.9 \sim 11.5 (11.1)$	$21.9 \sim 22.6 (22.2)$	$11.7 \sim 14.5 (13.0)$	$2.6 \sim 5.3 (3.6)$	$1.6 \sim 26.1$
1.0	$10.9 \sim 11.4 (11.1)$	$21.9 \sim 22.6 (22.2)$	$11.8 \sim 14.5 (13.1)$	$2.6 \sim 5.4 (3.6)$	$2.0 \sim 25.9$
2.0	$11.0 \sim 11.3 (11.1)$	$21.8 \sim 22.5 (22.1)$	$12.2 \sim 14.5 (13.2)$	$2.7 \sim 5.3 (3.7)$	$2.1 \sim 25.9$
3.0	$11.1 \sim 11.3 (11.1)$	$21.8 \sim 22.3 (22.1)$	$12.3 \sim 14.6 (13.3)$	$2.9 \sim 5.3 (3.9)$	$2.4 \sim 25.8$
4.0	$11.0 \sim 11.2 (11.1)$	$21.8 \sim 22.3 (22.1)$	$12.3 \sim 14.6 (13.6)$	$3.1 \sim 5.5 (4.2)$	$2.5 \sim 25.5$
5.0	$11.0 \sim 11.1 (11.0)$	$21.8 \sim 22.3 (22.1)$	$12.7 \sim 14.7 \ (13.8)$	$3.1 \sim 5.6 (4.5)$	$2.6 \sim 25.4$
6.0	$11.0 \sim 11.1 (11.0)$	$21.6 \sim 22.3 (22.1)$	$13.0 \sim 14.7 (14.1)$	$3.7 \sim 5.7 (4.7)$	$2.7 \sim 25.5$
7.0	$10.9 \sim 11.1 (11.0)$	$21.6 \sim 22.3 (22.1)$	$13.1 \sim 14.7 (14.3)$	$3.9 \sim 5.8 (4.8)$	$2.7 \sim 25.3$
8.0	$10.9 \sim 11.1 (11.0)$	$21.6 \sim 22.3 (22.0)$	$13.4 \sim 14.7 (14.4)$	$4.1 \sim 5.8 (5.0)$	$2.7 \sim 25.2$
9.0	$10.9 \sim 11.1 (11.0)$	$21.5 \sim 22.3 (22.0)$	$14.0 \sim 14.7 (14.5)$	$4.4 \sim 5.9 (5.1)$	$2.9 \sim 25.2$
10.0	$10.9 \sim 11.1 (11.0)$	$21.4 \sim 22.2 (22.0)$	$14.1 \sim 14.7 \ (14.6)$	$4.6 \sim 6.0 (5.2)$	$2.9 \sim 25.2$
15.0	$10.8 \sim 11.0 (10.9)$	$21.0 \sim 22.1 (21.6)$	$14.2 \sim 14.8 (14.6)$	$5.1 \sim 6.4 (5.6)$	$3.5 \sim 24.6$
20.0	$10.8 \sim 11.0 (10.8)$	$20.6 \sim 21.9 (21.2)$	$14.4 \sim 14.8 \ (14.6)$	$5.7 \sim 6.6 (6.0)$	$3.8 \sim 24.0$
25.0	$10.7 \sim 10.9 (10.7)$	$20.3 \sim 21.1 (20.8)$	$14.4 \sim 14.8 \ (14.5)$	$5.8 \sim 6.7 (6.3)$	$3.9 \sim 23.5$
30.0	$10.6 \sim 10.9 (10.7)$	$19.6 \sim 20.9 (20.5)$	$14.5 \sim 14.6 (14.5)$	$5.9 \sim 6.6 (6.3)$	$4.1 \sim 21.2$
35.0	$10.6 \sim 10.9 (10.6)$	$19.4 \sim 20.6 (20.3)$	$14.5 \sim 14.6 (14.5)$	$6.0 \sim 6.6 (6.4)$	$4.3 \sim 20.4$
40.0	$10.8 \sim 10.9 (10.8)$	$16.5 \sim 19.8 (18.6)$	$14.5 \sim 14.6 (14.5)$	$6.2 \sim 6.4 (6.3)$	$4.9 \sim 19.9$
45.0	$10.7 \sim 10.8 (10.7)$	$12.7 \sim 13.0 (12.9)$	$14.5 \sim 14.5 (14.5)$	$6.2 \sim 6.5 (6.4)$	$4.9 \sim 19.2$
50.0	$10.6 \sim 10.7 (10.6)$	$12.1 \sim 12.4 (12.2)$	$13.4 \sim 14.5 (13.7)$	$6.2 \sim 6.6 (6.4)$	$4.8 \sim 18.3$

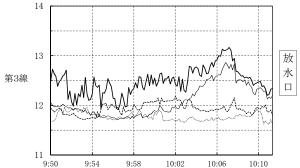

塩 分


	T.				l
水深	tota	tota	tota i man i la llen	tota	過去の測定値の
(m)	第1四半期	第2四半期	第 3 四 半 期	第 4 四 半 期	範囲
(111)					(H9. 4∼R2. 3)
表層	$28.3 \sim 32.6 (31.3)$	$33.6 \sim 34.1 (33.8)$	$31.9 \sim 33.6 (32.8)$	$31.8 \sim 33.7 (32.7)$	22.1 \sim 34.2
1.0	$30.2 \sim 32.6 (31.8)$	$33.6 \sim 34.1 (33.8)$	$31.9 \sim 33.7 (32.9)$	$31.9 \sim 33.7 (32.7)$	23. 3 \sim 34. 2
2.0	$30.7 \sim 32.8 (32.2)$	$33.7 \sim 34.1 (33.8)$	$32.1 \sim 33.8 (33.0)$	$31.9 \sim 33.7 (32.8)$	25. 1 \sim 34. 2
3.0	$31.1 \sim 33.0 (32.4)$	$33.7 \sim 34.1 (33.8)$	$32.2 \sim 33.8 (33.1)$	$32.2 \sim 33.7 (33.0)$	29.4 \sim 34.2
4.0	$31.9 \sim 33.2 (32.6)$	$33.7 \sim 34.1 (33.8)$	$32.2 \sim 33.8 (33.2)$	$32.2 \sim 33.8 (33.1)$	$30.4 \sim 34.2$
5.0	$32.3 \sim 33.3 (32.7)$	$33.7 \sim 34.1 (33.8)$	$33.0 \sim 33.8 (33.4)$	$32.2 \sim 33.8 (33.3)$	$31.4 \sim 34.2$
6.0	$32.5 \sim 33.4 (32.8)$	$33.7 \sim 34.1 (33.8)$	$33.1 \sim 33.8 (33.5)$	$33.0 \sim 33.8 (33.4)$	$31.7 \sim 34.3$
7.0	$32.6 \sim 33.5 (33.0)$	$33.7 \sim 34.1 (33.8)$	$33.1 \sim 33.8 (33.6)$	$33.1 \sim 33.8 (33.5)$	$31.7 \sim 34.2$
8.0	$32.7 \sim 33.6 (33.1)$	$33.8 \sim 34.1 (33.8)$	$33.5 \sim 33.9 (33.7)$	$33.2 \sim 33.8 (33.5)$	$31.9 \sim 34.2$
9.0	$32.9 \sim 33.6 (33.2)$	$33.8 \sim 34.1 (33.8)$	$33.5 \sim 33.9 (33.7)$	$33.3 \sim 33.9 (33.6)$	$32.1 \sim 34.2$
10.0	$33.0 \sim 33.7 (33.3)$	$33.8 \sim 34.1 (33.9)$	$33.6 \sim 33.9 (33.7)$	$33.4 \sim 33.9 (33.6)$	$32.4 \sim 34.2$
15.0	$33.5 \sim 33.9 (33.7)$	$33.8 \sim 34.1 (33.9)$	$33.7 \sim 33.9 (33.8)$	$33.6 \sim 34.0 (33.7)$	$32.8 \sim 34.3$
20.0	$33.7 \sim 33.9 (33.8)$	$33.9 \sim 34.1 (34.0)$	$33.8 \sim 33.9 (33.8)$	$33.8 \sim 34.0 (33.9)$	$33.2 \sim 34.2$
25.0	$33.8 \sim 33.9 (33.8)$	$34.0 \sim 34.1 (34.0)$	$33.8 \sim 33.9 (33.8)$	$33.9 \sim 34.1 (33.9)$	$33.3 \sim 34.2$
30.0	$33.9 \sim 34.0 (33.9)$	$34.0 \sim 34.1 (34.0)$	$33.8 \sim 33.9 (33.8)$	$33.9 \sim 34.0 (33.9)$	$33.4 \sim 34.2$
35.0	$33.9 \sim 34.0 (33.9)$	$34.0 \sim 34.1 (34.0)$	$33.8 \sim 33.9 (33.8)$	$33.9 \sim 34.0 (33.9)$	$33.4 \sim 34.3$
40.0	$34.0 \sim 34.0 (34.0)$	$34.0 \sim 34.1 (34.0)$	$33.8 \sim 33.9 (33.8)$	$33.9 \sim 34.0 (33.9)$	33.6 \sim 34.3
45.0	$34.0 \sim 34.0 (34.0)$	$34.2 \sim 34.3 (34.2)$	$33.8 \sim 33.9 (33.8)$	$33.9 \sim 34.0 (33.9)$	$33.7 \sim 34.4$
50.0	$34.0 \sim 34.0 (34.0)$	$34.2 \sim 34.2 (34.2)$	$34.0 \sim 34.0 (34.0)$	$33.9 \sim 34.0 (33.9)$	$33.7 \sim 34.3$

(注) ()内は平均値を示す。

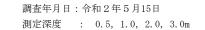
資料 1-2 曳航測定結果 水 温 (°C) 14 13 第1線 12 9:00 9:02 9:04 9:06 9:08 9:10 9:12 9:14 9:16 13 第2線 14

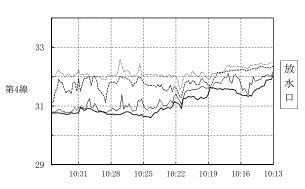


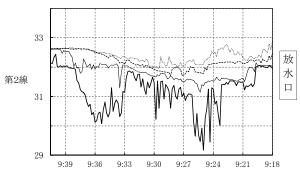


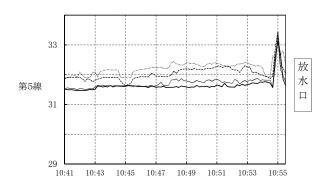
放

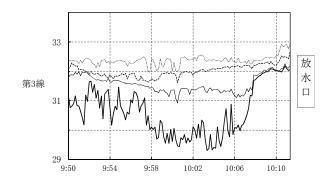
水口

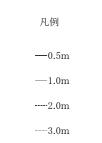


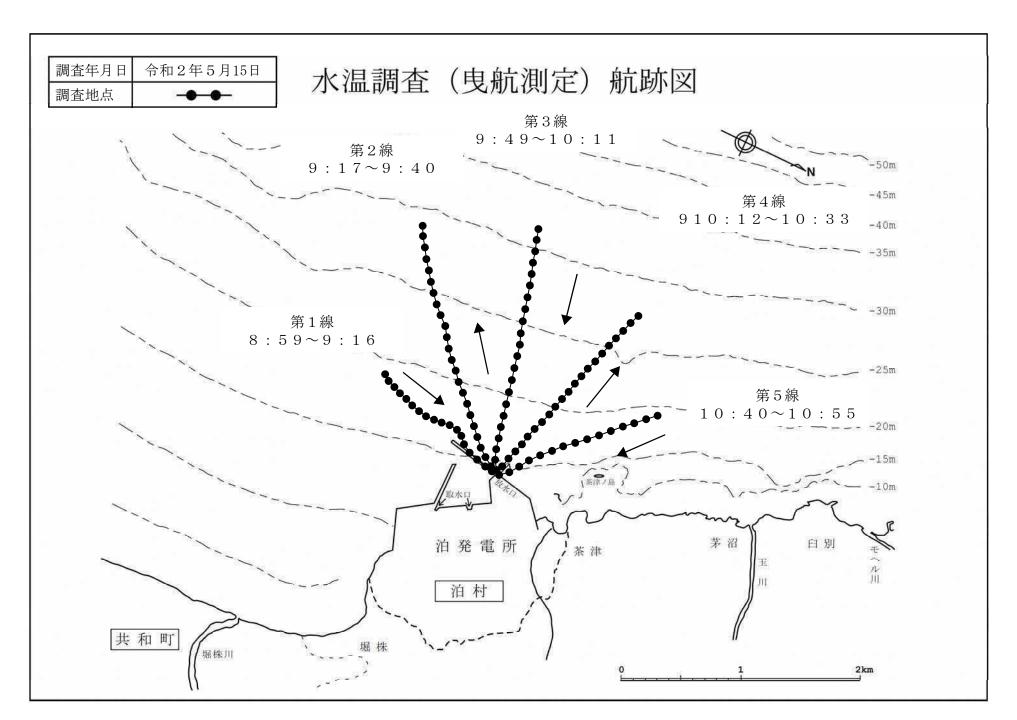


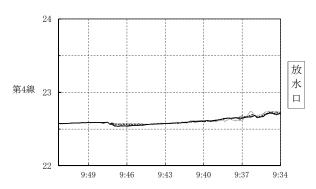


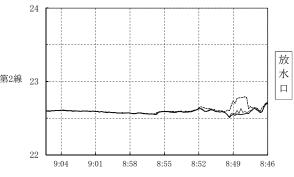

資料 1 - 2 曳航測定結果 塩 分 第1線 31 29 9:00 9:03 9:06 9:09 9:12 9:15


П



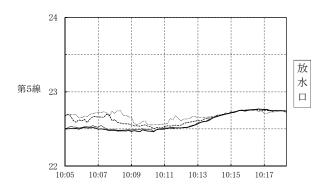


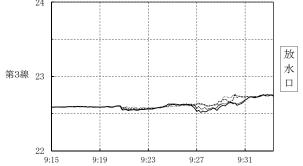




資料 1-2 曳航測定結果 水 温 (°C) 24 第1線 23 22 8:33 8:35 24 第2線 23 24

調査年月日:令和2年8月14日 測定深度 : 0.5, 1.0, 2.0, 3.0m

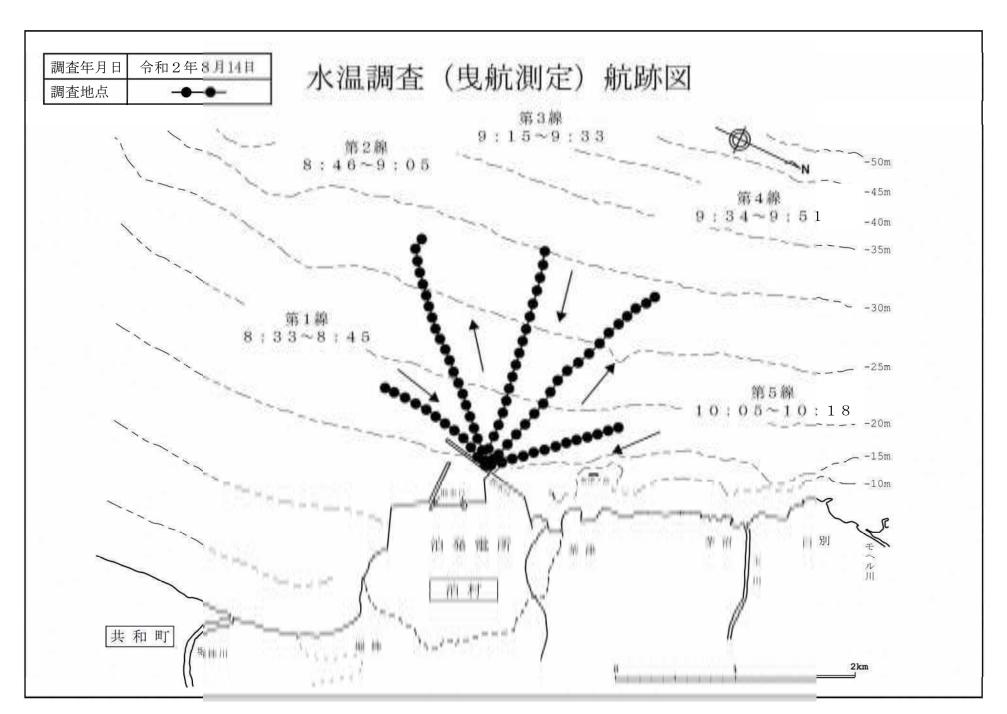



8:39

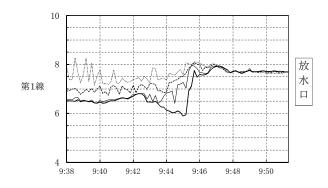
8:41

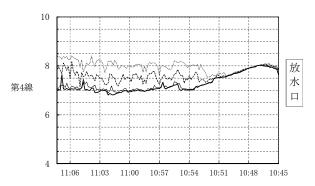
8:43

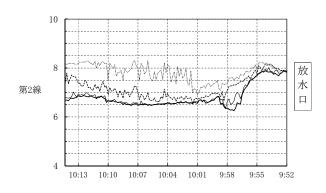
8:37

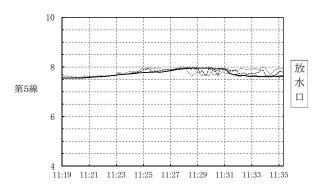


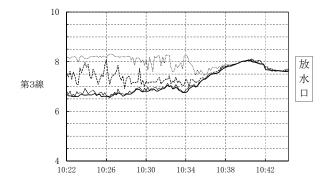
放


8:45


資料 1-2 曳航測定結果


水 温 (°C)

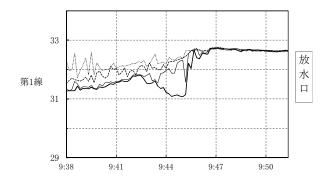



調査年月日:令和2年12月10日

測定深度 : 0.5, 1.0, 2.0, 3.0m

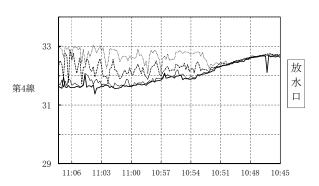
凡例

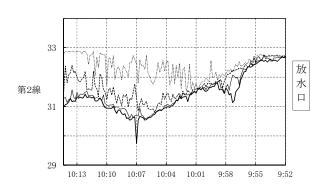
-0.5 m

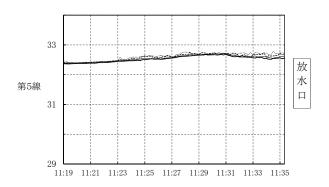

—1m

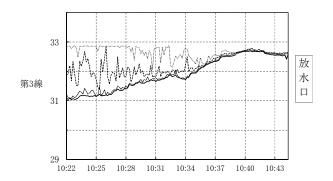
----2m

-----3m

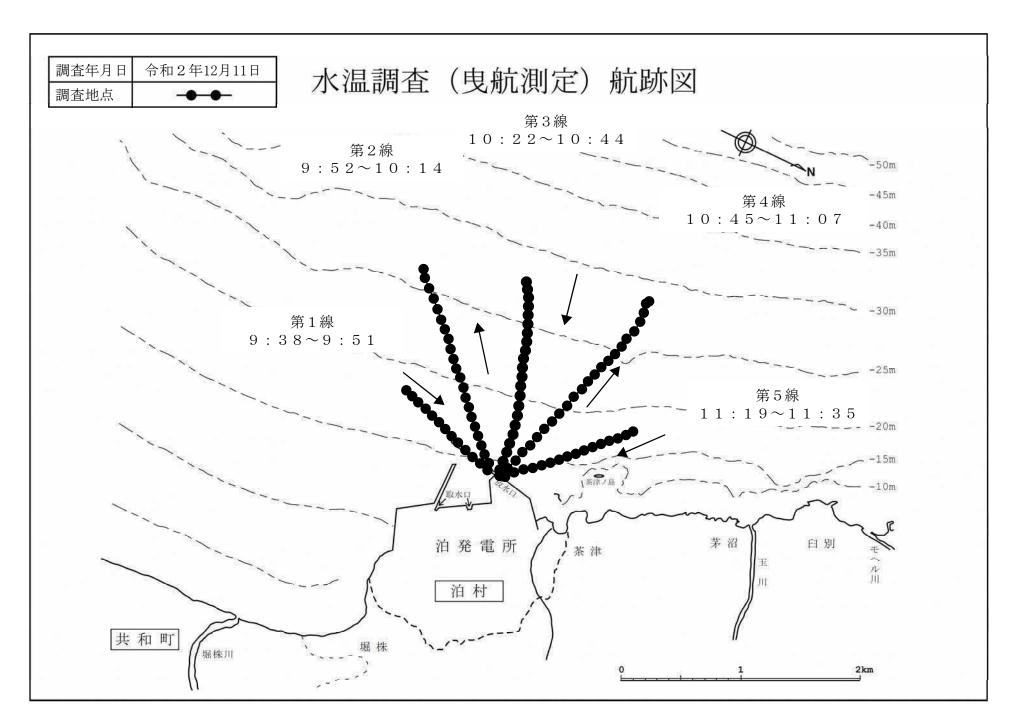

資料 1-2 曳航測定結果

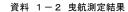

塩 分



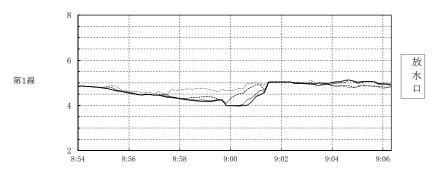

調査年月日:令和2年12月10日

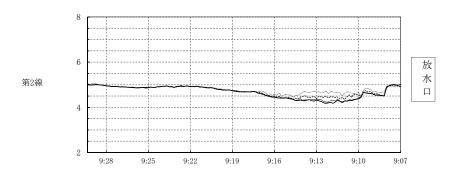
測定深度 : 0.5, 1.0, 2.0, 3.0m

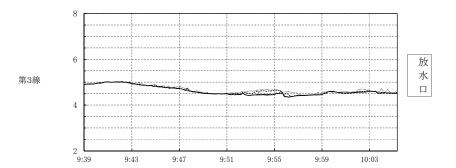


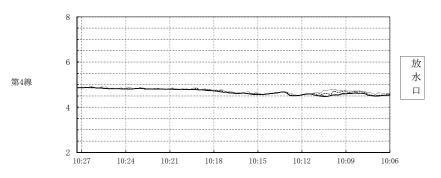

-0.5 m

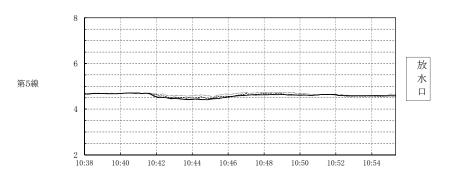
-1m

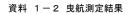

----2m


-----3m

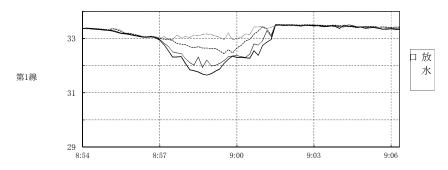


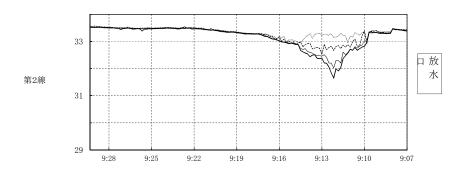

水 温(℃)

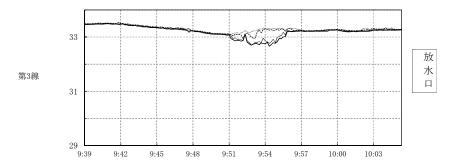


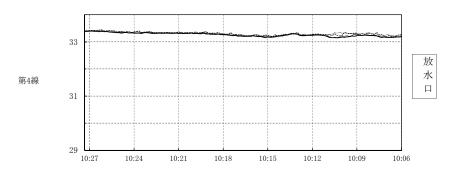


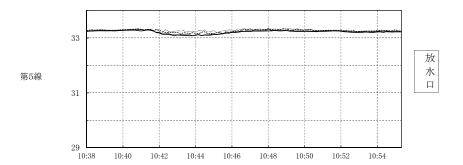
調査年月日: 令和3年2月13日 測定深度 : 0.5, 1.0, 2.0, 3.0m

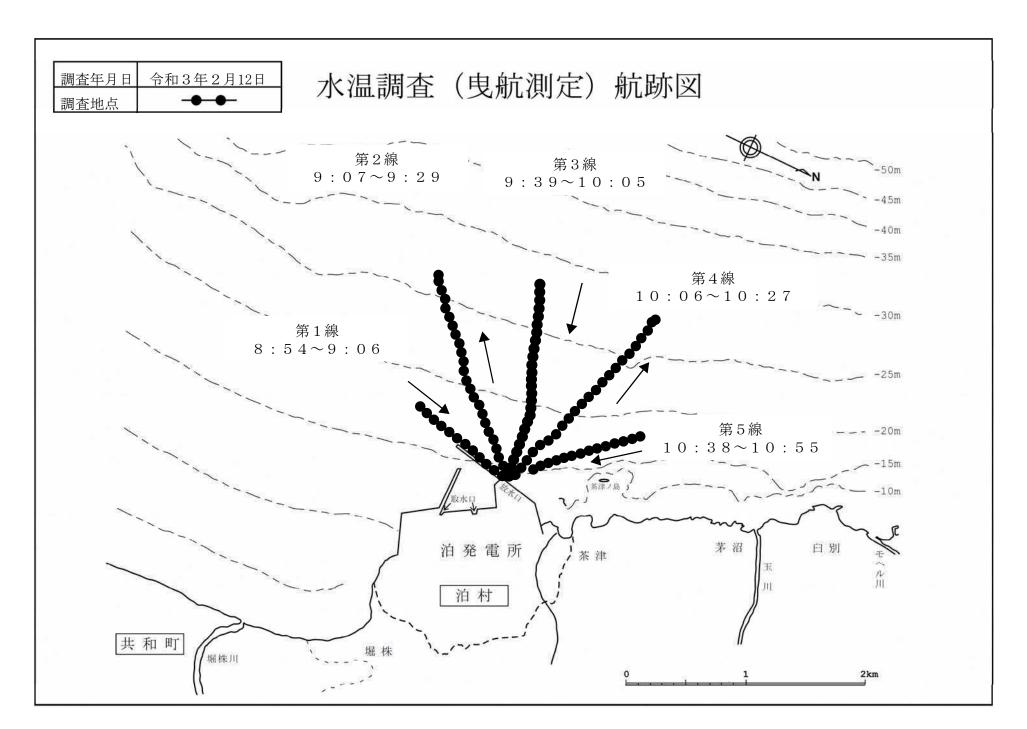







塩 分





調査年月日: 令和3年2月13日 測定深度 : 0.5, 1.0, 2.0, 3.0m

ウ 水温モニタ

取水口・放水口モニタ

単位:℃

	測定点		2年 4月	5月	6月	7月	8月	9月	10月	11月	12月	2年 1月	2月	3月
		最小	7.8	9.6	12. 9	18. 0	_	_	_	_	_	_	_	_
1	取水口モニタ	平均	8.6	11.4	15. 9	20. 1	_	_	_	_	_	_	_	_
		最大	9.8	13. 7	18. 3	21. 9	_	_	_	_	_	_	_	_
2 号 機		最小	7.8	9. 7	13. 3	18. 1	_	_	_	_	_	_	_	_
機	放水口モニタ	平均	8.6	11.5	16. 0	20.3	_	_	_	_	_	_	_	_
		最大	9.8	13.6	18. 5	22. 1	_	_	_	_	_	_	_	_
		最小	_	_	_	_	_	_	_	_	_	_	_	_
	取水口モニタ	平均	_	_	_	_	_	_	_	_	_	_	_	_
3		最大	_	_	_	_	_	_	_	_	_	_	_	_
3 号 機		最小	_	_	_	_	_	_	_	_	_	_	_	_
	放水口モニタ	平均	_	_	_	_	_	_	_	_	_	_	_	_
		最大	_	_	_	_	_	_	_	_	_	_	_	_
1 .	2 号機	平均	0.0	0. 1	0. 1	0. 2	_	_	_	_	_	_	_	_
	取放水温度差	最大	0.2	0.4	0. 7	0.8	_	_	_	_	_	_	_	_
3 5	号機	平均	_	_	_	_	_	_	_	_	_	_	_	_
	取放水温度差	最大	_	_	_	_	_	_	_		_	_		_

⁽注) 3号機取水口、放水口モニタは平成21年1月から測定を開始した。

沖合モニタ 単位: $\mathbb C$

測定点	Į.		2年 4月	5月	6月	7月	8月	9月	10月	11月	12月	2年 1月	2月	3月
		最小	7. 1	9.6	13. 2	18. 2	21. 2	21. 2	13. 7	8. 4	4. 6	3. 1	2.8	3. 1
	表層	平均	8. 5	11.6	16.3	20.8	22. 4	22. 9	18. 2	12. 9	7. 4	6.9	5. 4	6.3
		最大	10. 5	14.0	18.9	23. 2	24. 5	25. 2	21.9	15.8	10. 2	9.0	7. 7	9. 4
		最小	7.8	9. 5	12.8	17.8	21.0	21.7	15. 0	9. 4	5. 2	4. 9	3.9	4.8
	5m	平均	8. 5	11.3	15.8	20. 1	22. 3	22. 9	18. 5	13. 3	7. 7	7. 1	5.6	6.4
沖合モニタ		最大	9. 9	13.6	18. 2	21.8	23. 6	25. 2	21.9	15.8	10. 3	9.0	7. 9	8.0
TTTTTTTT		最小	7. 7	9.4	12.2	17. 3	20. 3	21.7	15. 5	9. 5	5. 3	5. 1	4.0	5.0
	10m	平均	8. 5	11. 1	15.5	19. 3	22. 1	22. 9	18.6	13. 5	7. 9	7. 2	5.8	6.4
		最大	9. 5	13. 2	18.2	21. 7	23. 5	24.8	21.9	16. 1	10. 3	9.0	7. 9	8.0
		最小	7. 7	9.4	11.9	15. 1	19. 5	21. 2	15. 6	9. 5	5. 4	5. 1	4.0	5. 2
	14m	平均	8. 4	10.9	15. 1	18. 7	21.8	22. 9	18. 7	13. 7	8. 2	7. 2	5. 9	6. 5
	h (1)	最大	9.5	13.1	18. 0	21. 7	23. 4	24. 5	21.9	16. 4	10.8	9.0	7. 9	8.0

⁽注)沖合モニタの14m層は平成18年度第3四半期から測定を開始した。

(2) 流 況 調 査

区分	;	項目	調査点	第12	四半	期		第2	四	半期		第3	四	半期		第4	四:	半期	
			D - 3	N	(2	28. 5)	N	(23. 4)	N	(18. 1)	S	(24. 0)
	2		F - 3	N	(2	25. 1)	NNW	(21.7)	NNW	(23. 1)	S	(21.9)
		目. 据土 法	F - 6	N	(2	25. 3)	N	(19.9)	NNW	(20.7)	NNW	(17.4)
	m	最頻方位 (頻度、%)	G-4	NNW	(2	23. 1)	NNW	(15.9)	NNW	(20.9)	S	(17.2)
		(93/2)	H - 3	NW	(1	8.8)	NW	(20.6)	WNW	(20.2)	S	(21.6)
流	層		J -1	ESE	(1	3. 3)	SE	(12.6)	ESE	(13. 1)	SE	(11.3)
			J -3	NNE	(1	9.5)	SSE	(13.5)	N	(16. 3)	SSE	(13.3)
			D - 3	NNW	(2	25. 7)	N	(24. 1)	N	(22.0)	S	(31.9)
	5		F - 3	NNW	(2	26. 1)	N	(0.0)	NNW	(16.5)	S	(24. 1)
		目. 据土 法	F - 6	N	(2	21. 2)	N	(19.6)	NNW	(22.8)	NNW	(17.4)
	m	最頻方位 (頻度、%)	G-4	N	(2	24. 0)	N	(19.8)	N	(21.8)	S	(20.7)
			H - 3	NNW	(1	9. 7)	S	(15.8)	NNW	(19.8)	S	(25. 1)
	層		J -1	NNE	(1	1.0)	SE	(14. 2)	ESE	(13.8)	N	(13. 1)
			J -3	NNE	(1	7. 7)	SSE	(19.6)	NNE	(17.6)	SSE	(15.9)
			D - 3	N	(2	29. 2)	N	(28.4)	N	(27.8)	S	(30.6)
向	10		F-3	N	(2	22. 3)	N	(20.6)	N	(24.0)	S	(24.0)
111		最頻方位	F - 6	N	(2	24. 1)	N	(19.0)	N	(26.3)	N	(17.6)
	m	(頻度、%)	G-4	N	(1	9. 2)	N	(21.6)	N	(22. 2)	S	(19.0)
	_	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	H-3	NNW	(1	8. 5)	S	(19.5)	NNW	(17.7)	S	(24. 7)
	層		J -1	N	(1	0.0)	NNW	(13.5)	ESE	(11.2)	N	(13.5)
			J -3	N		3. 7)	N	(15.6)	N	(18. 7)	SSE	(15.8)
			D - 3	0~10		10.3)	0~10	(63. 1)	0~10	(63. 5)	0~10	(46.6)
	2		F-3	10~20		13.4)	0~10	(63.8)	0~10	(53. 3)	0~10	(50.3)
		最頻流速	F-6	10~20		86. 0)	0~10	(41.1)	0~10	(41.7)	0~10	(46.0)
流	m	(頻度、%)	G-4	10~20		87. 9)	0~10	(57.4)	0~10	(45.3)	0~10	(54. 4)
	Ħ		H-3	10~20		l9. 2)	0~10	(60.7)	0~10	(50.9)	0~10	(63. 9)
	層		J -1	0~10		37. 2)	0~10		95.0)	0~10		88.8)	0~10	(89.6)
	unanananananananananananananananananana		J -3	0~10	~~~~~~	55. 7)	0~10	~~~~~	82.0)	0~10		68. 5)	0~10	(70. 7	
			D-3	0~10		17.8		0~10)	0~10	()	0~10	,	42.9	
	5		F-3	0~10		2. 1		0~10		0.0)	0~10	()		(45. 7	
\ ±		最頻流速	F-6	0~10		4. 7		0~10		49. 4		0~10	(43.6)	0~10		50.9	
速	m	(頻度、%)	G-4	0~10		17.0	Ċ	0~10	,	62. 4		0~10	(2)	0~10		51. 7	
	層		H-3	10~20		4.5			()	0~10	(56. 0)	10~20		45. 5	
	眉		J-1	0~10		22. 3		0~10)	0~10	()	0~10		91. 4	
			J-3	0~10		52. 1		0~10		79.6	```	0~10	(73. 2		0~10		73. 1	
			D-3	0~10		3. 9		0~10	,)	0~10	(62.8)	0~10		49. 1)
	10		F - 3	0~10		52. 3		0~10	(78. 4	`	0~10	()	10~20		46. 1)
(om/=)	100	最頻流速	F-6	0~10		8.0		0~10		47. 5)	0~10	()	0~10		48.6	
(cm/s)	m	(頻度、%)	G-4	0~10		50.6		0~10)	0~10	()	0~10		47. 0)
	層		H-3	0~10		55. 6		0~10		70. 2		0~10	()	10~20		45. 6)
	僧		J-1	0~10		02.5		0~10		97. 5)	0~10)	0~10		89. 3)
			J - 3	0~10	(7	'6. 2)	0~10	(84. 7)	0~10	(75. 7)	0~10	(78. 1)

(注) F-6地点は平成18年度第3四半期から調査を開始した。

(3) 水質調査

ア海域

項目	単位	第1四半期	第2四半期	第3四半期	第4四半期	過去の測定値の 範 囲
						(S61. 9∼R2. 3)
塩 分		$28.6 \sim 33.9$	$30.4 \sim 34.0$	$30.2 \sim 33.8$	$32.3 \sim 33.9$	$14.2 \sim 34.3$
温 刀		(32.4)	(33.1)	(32.5)	(33.4)	14. 2 7 34. 3
活 明 庄		$4.5 \sim 11.1$	$5.5 \sim 11.3$	$4.2 \sim 8.5$	$8.9 \sim 13.8$	1 0 - 90 4
透明度	m	(7.9)	(8.8)	(6.4)	(10.9)	$1.0 \sim 26.4$
水素イオン濃度		8.0 ~ 8.1	8.1~8.2	$7.9 \sim 8.0$	$7.9 \sim 8.0$	7.0 - 9.4
[pH]		(8.1)	(8.1)	(7.9)	(7.9)	7.8 \sim 8.4
溶存酸素量	/I	8.9 ~ 10.3	6. $4 \sim 8.0$	$8.7 \sim 11.4$	$9.6 \sim 10.6$	6.6 - 19.9
[DO]	mg/L	(9.2)	(7.5)	(9.7)	(10.0)	$6.6 \sim 12.3$
化学的酸素要求量	/I	< 0.5 ∼ 1.1	< 0.5 ∼ 0.8	< 0.5 ∼ 1.0	< 0.5 ∼ 0.5	/ O E = 2 O
[COD]	mg/L	(0.5)	(0.5)	(0.5)	(0.5)	$< 0.5 \sim 2.9$
浮遊物質量	/I	< 1.0 ∼ 24.7	< 1.0 ∼ 6.6	$1.1 \sim 12.7$	< 1.0 ∼ 8.5	/ 1 0 - 14 9
[SS]	mg/L	(3.5)	(2.6)	(2.8)	(1.3)	$< 1.0 \sim 14.2$
全 リ ン	/I	$0.007 \sim 0.023$	$0.004 \sim 0.012$	$0.008 \sim 0.015$	$0.012 \sim 0.019$	0.002 - 0.070
[T-P]	mg/L	(0.010)	(0.006)	(0.011)	(0.015)	$0.003 \sim 0.079$
リン酸態リン	/I	< 0.002 ∼ 0.003	< 0.002 ~ 0.002	$0.005 \sim 0.008$		/ 0 000 - 0 04C
[PO ₄ -P]	mg/L	(0.002)	(0.002)	(0.004)	(0.011)	$< 0.002 \sim 0.046$
全 室 素	/I	$0.08 \sim 0.22$	$0.07 \sim 0.17$	$0.12 \sim 0.22$	$0.14 \sim 0.21$	0.00 - 0.04
[T-N]	mg/L	(0.10)	(0.10)	(0.15)	(0.16)	$0.02 \sim 0.64$
アンモニア態窒素	/1	$< 0.005 \sim 0.013$	$< 0.005 \sim 0.013$	$< 0.005 \sim 0.019$		/ 0 00F 0 000
[NH ₄ -N]	mg/L	(0.005)	(0.005)	(0.006)	(0.005)	$< 0.005 \sim 0.080$
亜 硝 酸 態 窒 素	/1	(0 000	(0, 000	$0.003 \sim 0.004$	(0 000	/ 0 000 0 00C
[NO ₂ -N]	mg/L	< 0.003	< 0.003	(0.003)	< 0.003	< 0.003 ~ 0.006
硝酸態窒素	/т	< 0.003 ∼ 0.053	< 0.003 ~ 0.023	$0.027 \sim 0.092$	$0.067 \sim 0.097$	/ 0 000 0 105
[NO ₃ -N]	mg/L	(0.008)	(0.005)	(0.030)	(0.075)	< 0.003 ∼ 0.165
n-ヘキサン抽出物質	mg/L	< 0.5	< 0.5	< 0.5	< 0.7	< 0.5 ∼ 1.4

(注) () 内は平均値を示す。

イ 河 川

項目	単位	第1四半期	第2四半期	第3四半期	第4四半期	過去の測定値の 範 囲 (S61.9~R2.3)
塩 分	_	0.0	0.0	0.0	0.0	0.0~0.6
透明度	m	1.5	1. 2	> 1.5	> 1.5	$0.2 \sim 3.5$
水素イオン濃度 [p H]	_	7.2	7. 3	7. 4	7. 0	6. 2 ~ 8. 1
溶存酸素量 [DO]	mg/L	11.7	8. 4	12. 2	12. 9	6.3 ~ 13.5
化学的酸素要求量 [COD]	mg/L	1.3	1.6	1. 1	1.0	< 0.5 ∼ 3.9
浮遊物質量	mg/L	3.8	6. 5	1. 0	1. 2	1.0~99.8
全 リ ン [T-P]	mg/L	0. 024	0. 059	0.018	0. 027	0.009 ~ 0.145
リン酸態リン [PO ₄ -P]	mg/L	0.004	0. 034	0. 020	0. 014	0.004 ~ 0.094
全 窒 素 [T-N]	mg/L	0.60	0. 59	0. 62	0.99	$0.25 \sim 1.33$
アンモニア態窒素 [NH ₄ -N]	mg/L	0. 136	0. 051	0. 046	0.063	< 0.005 ~ 0.476
亜 硝 酸 態 窒 素 [NO ₂ -N]	mg/L	0.004	0.005	< 0.003	< 0.003	< 0.003 ~ 0.013
硝酸態窒素 [NO ₃ -N]	mg/L	0. 375	0. 343	0. 495	0.810	0. 142 ~ 1. 492
n-ヘキサン抽出物質	mg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5

(4) 底 質 調 査

ア GH-1.5地点以外の調査地点

項目	単位		第2四半期	第3四半期	第4四半期	過去の測定値の 範 囲
化学的酸素 要 求 量	mg/g	0.3 ~ 0.8	0.4 ~ 1.3	0.5 ~ 0.9	0.3 ~ 0.9	(S61. 9~R2. 3)
g 水量 [COD]	乾泥	(0.6)	(0.8)	(0.7)	(0.6)	(0.11 0 2.5
全硫化物	mg/g	<0.01	<0.01 ~ 0.03	<0.01	<0.01 ~ 0.02	<0.01 ∼0.17
	乾泥	(0.01)	(0.02)	(0.01)	(0.01)	
強熱減量	%	$\begin{vmatrix} 1.8 & \sim & 3.7 \\ (& 2.6 &) \end{vmatrix}$	$1.6 \sim 3.9$ (2.5)	$ \begin{vmatrix} 1.7 & \sim & 3.1 \\ (& 2.3 &) \end{vmatrix} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.5~5.1
中央粒径	mm	$0.16 \sim 0.41$ (0.19)	$0.14 \sim 0.33$ (0.18)	$0.14 \sim 0.30$ (0.17)	$0.14 \sim 2.45$ (0.31)	0. 08 ~ 4. 23

(注) () 内は平均値を示す。

イ GH-1.5地点

項目	単 位	第1四半期	第2四半期	第3四半期	第4四半期	過去の測定値の 範 (S61.9~R2.3)
化学的酸素 要 求 量 [COD]	mg/g 乾泥	2.7	$2.8 \sim 5.9$ (3.2)	3. 4	$4.1 \sim 4.3$ (4.2)	0.5 ~ 20.8
全硫化物	mg/ g 乾泥	0.11	$0.04 \sim 0.08$ (0.06)	0. 08	$0.06 \sim 0.12$ (0.09)	<0.01 ~ 0.91
強熱減量	%	4. 3	$2.8 \sim 4.8$ (3.8)	3. 3	$2.8 \sim 4.6$ (3.7)	1.7~7.0
中央粒径	mm	0.18	$0.15 \sim 0.18$ (0.17)	0. 17	$0.14 \sim 0.18$ (0.16)	0.08~0.33

(注) ()内は平均値を示す。

2 生物調査

(1)潮間帯生物

調査方法	項目	単位	第1四半期	第2四半期	第3四半期	第4四半期	過去の調査結果の範囲 (S61.9~R2.3)
	平均個体数	個体数/㎡	1743.7	875.7	1316.9	1556.7	172.6~9,125.6
目	出現種類数	-	57	59	56	56	27~62
視			イワフジツボ	1		イワフジツボ	イワフジツボ
観	出 現 種	_	コウダカチャイロタマキビガイ				コウダカチャイロタマキビガイ
察			タマキビガイ	コウダカチャイロタマキビガイ	ムラサキインコガイ	ムラサキインコガイ	ムラサキインコガイ
			など	など	など	など	など

(2) 底生生物

ア マクロベントス

(ア) GH-1.5地点以外

調査	項目	単位	第1四半期	第2四半期	第3四半期	第4四半期	過去の調査結果の範囲
方法		/m /44/. / 2	220.0	260.2	100.0	145.0	(S61.9~R2.3)
	平均個体数		328.9	260.2	100.9	145.2	75.4~750.9
	平均湿重量		37.92	9.64	17.14	27.60	1.94~277.41
採	出現種類数	1	47	51	35	40	32~84
			ヒダエラソコエビ	ボンタソコエビ	ヒサシソコエビ科	マルソコエビ科の1種	マルソコエビ科の1種
泥	出現種	_	(Anonyx nugax pacificus) マルソコエビ科の1種	(Synchelidium lenorostralum) クビナガスガメ		(<i>Urothoe</i> sp.) ヒサシソコエビ科	(<i>Urothoe</i> sp.) ミズヒキゴカイ科の1種
法			(<i>Urothoe sp</i> .) フトヒゲソコエビ科の1種	(Ampelisca brevicornis) マルソコエビ科の1種		(Phoxocephalidae) レウコン科の1種	(<i>Chaetozone</i> sp.) マルソコエビ科の1種
			(Orchomene sp.)	(Urothoe sp.)	(Goniada maculata)	(Pseudoleucon sp.)	(Urothoe pulchella)
			など	など	など	など	など

(イ) GH-1.5地点

調査			Ada a see a la liigi	Mary and the state of the state	Mary and the state of the state	fife a man ale lim	過去の調査結果の範囲
方法	項目	単位	第1四半期	第2四半期	第3四半期	第4四半期	(S61.9~R2.3)
	平均個体数	個体数/m²	1,150.0	695.0	640.0	720.0	70.0~10,615.0
	平均湿重量	g/m^2	81.90	88.95	60.30	23.05	1.46~981.20
採	出現種類数	_	25	27	19	20	7∼52
			タケフシゴカイ科	ギボシイソメ科の1種	ギボシイソメ科の1種	ギボシイソメ科の1種	ギボシイソメ科の1種
泥				(Lumbrineris longifolia)	(Lumbrineris longifolia)	(Lumbrineris longifolia)	(Lumbrineris longifolia)
	出 現 種	<u> </u>	シロガネゴカイ科の1種	タケフシゴカイ科	タケフシゴカイ科	タケフシゴカイ科	ミズヒキゴカイ科の1種
法			(Nephtys sp.)	(Maldanidae)	(Maldanidae)	(Maldanidae)	(Chaetozone sp.)
			ギボシイソメ科の1種	サクラガイ	シロガネゴカイ科の1種	シロガネゴカイ科の1種	サクラガイ
			(Lumbrineris longifolia)	(Nitidotellina nitidula)	(Nephtys sp.)	(Nephtys sp.)	(Nitidotellina nitidula)
			など	など	など	など	など

イ メガロベントス

調査方法	項目	単位	第1四半期	第2四半期	第3四半期	第4四半期	過去の調査結果の範囲 (S61.9~R2.3)
		個体数/10㎡	413.4	736.0	758.5	542.9	278.0~2,242.8
目	出現種類数	_	47	49	50	40	34~56
視			タマキビガイ	ムラサキインコガイ	ムラサキインコガイ	ムラサキインコガイ	ムラサキインコガイ
観	出 現 種	_	コシダカガンガラ	タマキビガイ	コシダカガンガラ	ヘソアキクボガイ	タマキビガイ
察			ヘソアキクボガイ	ヘソアキクボガイ	タマキビガイ	タマキビガイ	コシダカガンガラ
			など	など	など	など	など

(3)海藻

調査							過去の調査結果の範囲
	項目	単位	第1四半期	第2四半期	第3四半期	第4四半期	
方法							(S61.9~R2.3)
	出現種類数	_	56	41	42	51	33~64
目			無節サンゴモ類	無節サンゴモ類	無節サンゴモ類	無節サンゴモ類	無節サンゴモ類
視	出 現 種	_	イソガワラ	イソガワラ	イソガワラ	イソガワラ	ピリヒバ
観			フクロノリ	ピリヒバ	アミジグサ	フクロノリ	フジマツモ
察							
			など	など	など	など	など

(4) 魚等の遊泳動物

項目	単位	第1四半期	第2四半期	第3四半期	第4四半期	過去の調査結果の範囲
						(S61.9~R2.3)
平均個体数	_	164.4	221.2	267.8	124.2	27.1~3,233.3
平均重量	g	62,028.9	41,725.2	78,536.8	76,925.5	9,264.9~474,398.5
出現種類数	_	34	27	37	23	12~38
		ホッケ	マサバ	カワハギ	ソウハチ	ホッケ
出現種	_	カナガシラ	ヒラツメガニ	ヒラメ	ツマグロカジカ	マフグ
		ソウハチ	イシダイ	ホッケ	マダラ	スナガレイ
		など	など	など	など	など

(5) 卵·稚仔

調査	調査							過去の調査結果の範囲
		項目	単位	第1四半期	第2四半期	第3四半期	第4四半期	
項目	方法							(S61.9~R2.3)
		平均個体数	個体数/100m³	275	382	+	143	0~9,937
		出現種類数		6	6	3	3	0~12
即	MTD			カレイ科 1	シイラ	無脂球形卵 4	スケトウダラ	スケトウダラ
	ネット	出 現 種	_	スケトウダラ	ネズッポ科	単脂球形卵 8	カレイ科 1	カレイ科1
				単脂球形卵 10	カタクチイワシ	単脂球形卵 10	アカガレイ	ネズッポ科
				など	など			など
		平均個体数	個体数/100m³	5	6	1	38	+~287
		出現種類数	=	11	6	3	6	1~15
稚仔	MTD			メバル属	ネズッポ科	アイナメ属	スケトウダラ	カタクチイワシ
	ネット	出 現 種	_	ウスメバル	ハゼ科	カタクチイワシ	ホッケ	スケトウダラ
				マガレイ	カタクチイワシ	アユ	フサギンポ属	アイナメ属
				など	など		など	など

(注) +:1個体/100m³未満を示す。

(6)動・植物プランクトン

調査	調査							過去の調査結果の範囲
		項目	単位	第1四半期	第2四半期	第3四半期	第4四半期	
項目	方法							(S61.9~R2.3)
動		平均個体数	個体数/m³	38,891.0	14,597.9	12,512.6	8,080.2	1,286.3~45,426.0
物	ネ	出現種類数		54	68	85	53	32~104
プ	ツ			Nauplius of COPEPODA	Nauplius of COPEPODA	Copepodite of Paracalanus	Nauplius of COPEPODA	Nauplius of COPEPODA
ラ	1	出 現 種	_	Copepodite of Oithona	Oikopleura dioica	Nauplius of COPEPODA	Copepodite of Oithona	Copepodite of Oithona
ン	法			Copepodite of Pseudocalanus	Copepodite of Paracalanus	Copepodite of Oncaea	Copepodite of Pseudocalanus	Copepodite of Paracalanus
ク								
1								
ン				など	など	など	など	など
植		平均細胞数	細胞数/L	125,726	49,057	12,848	3,139	346~1,542,580
物	採	出現種類数	ı	84	78	88	65	37~109
プ				Chaetoceros sociale	Cerataulina pelagica	НАРТОРНҮСЕАЕ	Thalassiosira spp.	Skeletonema costatum
ラ	水	出 現 種	_	Nitzschia spp.	Chaetoceros affine	Bacteriastrum sp.	Thalassionema nitzschioides	Chaetoceros sociale
ン				Bacteriastrum sp.	Bacteriastrum sp.	Thalassionema nitzschioides	Nitzschia spp.	Thalassiosira spp.
ク	法							
1								
ン				など	など	など	など	など

(7) スケトウダラ

調査	調査	単 位	12月	1月	2月	3月	過去の調査結果の範囲
項目	方法						(S61.9~R2.3)
àЬ	北太平洋標準ネット		3	122	869	31	0~6,622
稚仔	北太平洋標準ネット	個体数/100m ³ -	0	+	59	6	0~151
稚魚	改良型まるちネット	個体数/500m³	0	+	1	+	0~5

(注) +:1個体/100m³未満を示す。

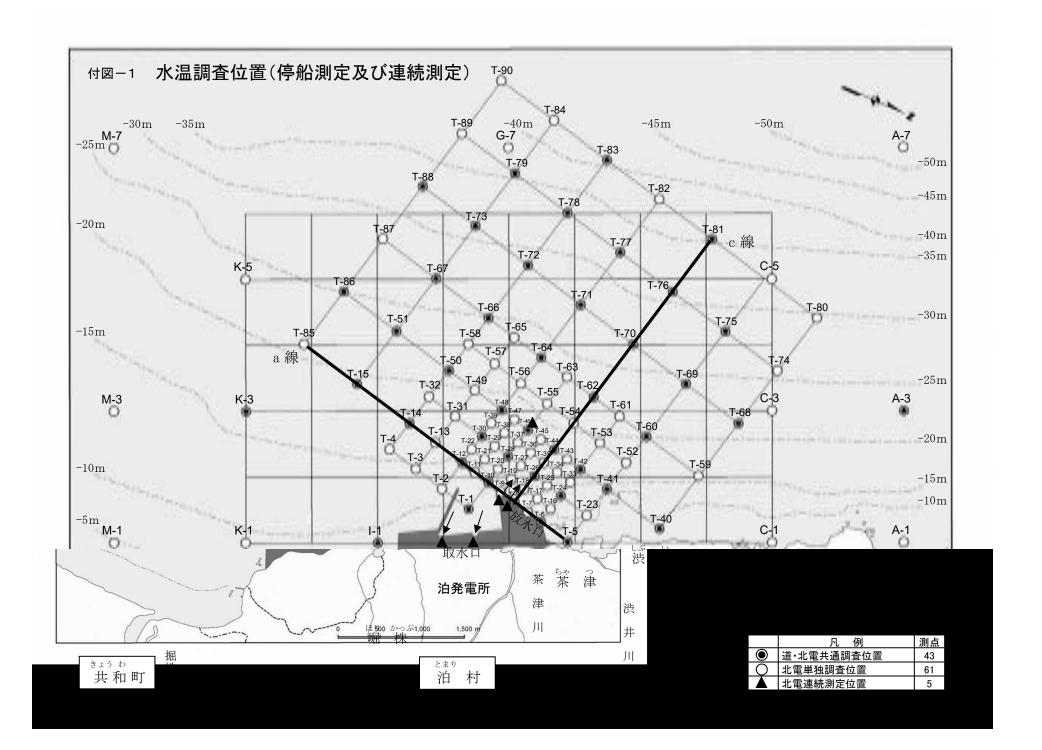
3 参 考

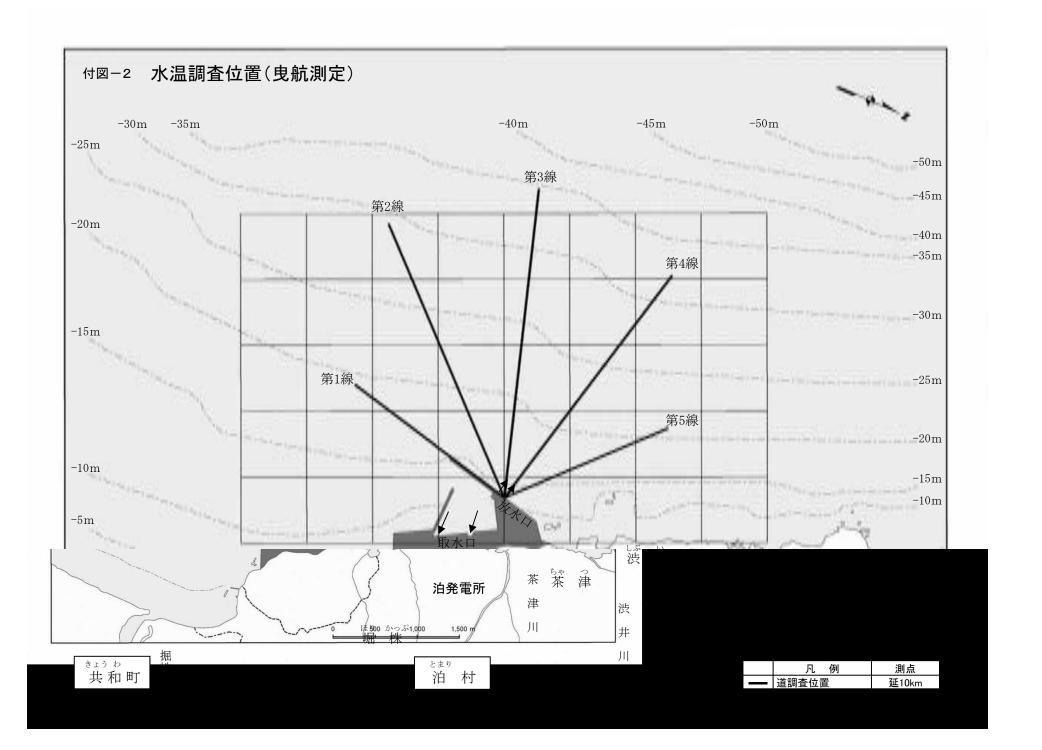
参考1 水質・底質測定分析方法

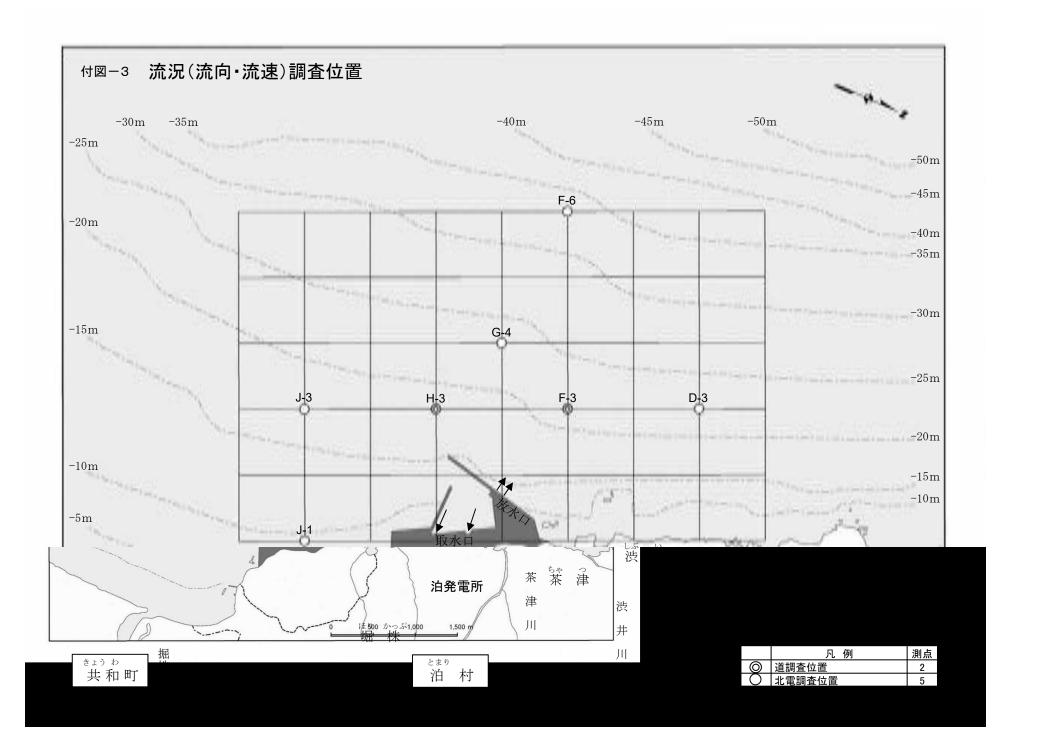
	項目	測定 ・ 分析方法	単位	定量限界	有効数字の最小の位
	水温	指針(2010年)第1部 4.3.1に定める方法	$^{\circ}\! \mathbb{C}$		小数点以下 1 桁
	塩 分	指針(2010年)第1部 5.3に定める方法			小数点以下 1 桁
	透明度	指針(2010年)第1部 3.2に定める方法	m		小数点以下 1 桁
水	水素イオン濃度 (pH)	規格 K0102(2008年) 12.1に定める方法			小数点以下 1 桁
	溶存酸素量 (DO)	規格 K0102(2008年) 32.1に定める方法	mg/L	0.5	小数点以下 1 桁
	化学的酸素要求量 (COD)	告示別表 2.2.7.備考2 に掲げる方法	mg/L	0.5	小数点以下 1 桁
	浮遊物質量 (SS)	告示付表9に掲げる方法	mg/L	1.0	小数点以下 1 桁
	全 リ ン (T-P)	規格 K0170(2011年) 第4部 7.3.5に定める方 法	mg/L	0.003	小数点以下 3 桁
	リン酸態リン (P04-P)	規格 K0170(2011年) 第4部 6.3.4に定める方 法	mg/L	0.002	小数点以下 3 桁
	全 窒 素 (T-N)	規格 K0170(2011年) 第3部 6.3.5に定める方法	mg/L	0. 01	小数点以下 2 桁
質	アンモニア態窒素 (NH4-N)	規格 K0170(2011年) 第1部 6.5に定める方法	mg/L	0.005	小数点以下 3 桁
	亜硝酸態窒素 (NO2-N)	規格 K0170(2011年) 第2部 6.3.5に定める方 法	mg/L	0.003	小数点以下 3 桁
	硝酸態窒素 (NO3-N)	規格 K0170(2011年) 第2部 7.3.5に定める方 法	mg/L	0.003	小数点以下 3 桁
	n-^キサン抽出物質	告示付表11に掲げる方法	mg/L	0.5	小数点以下 1 桁
底	化学的酸素要求量 (COD)	環水管第127号に掲げる方法	mg/g (乾泥)	0. 1	小数点以下 1 桁
	全硫化物	環水管第127号に掲げる方法	mg/g (乾泥)	0. 01	小数点以下 2 桁
質	強熱減量	環水管第127号に掲げる方法	%		小数点以下 1 桁
只	粒度組成	規格 A1204(1990年)に定める方法	%		小数点以下 1 桁

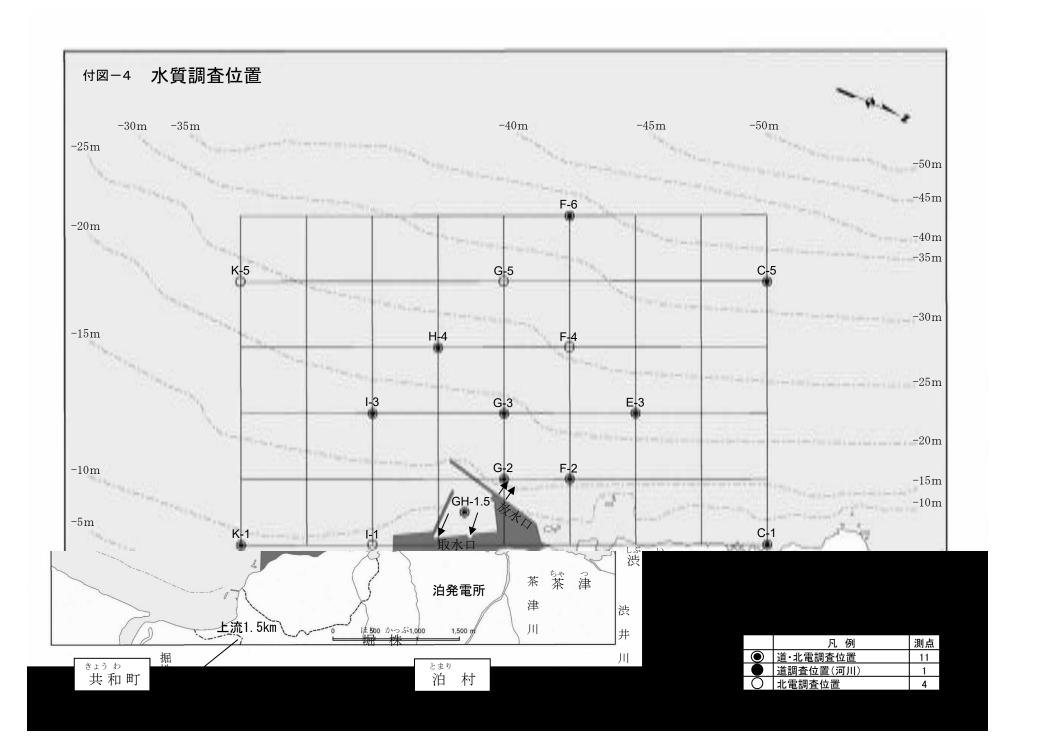
注) 指 針:海洋観測指針(気象庁)

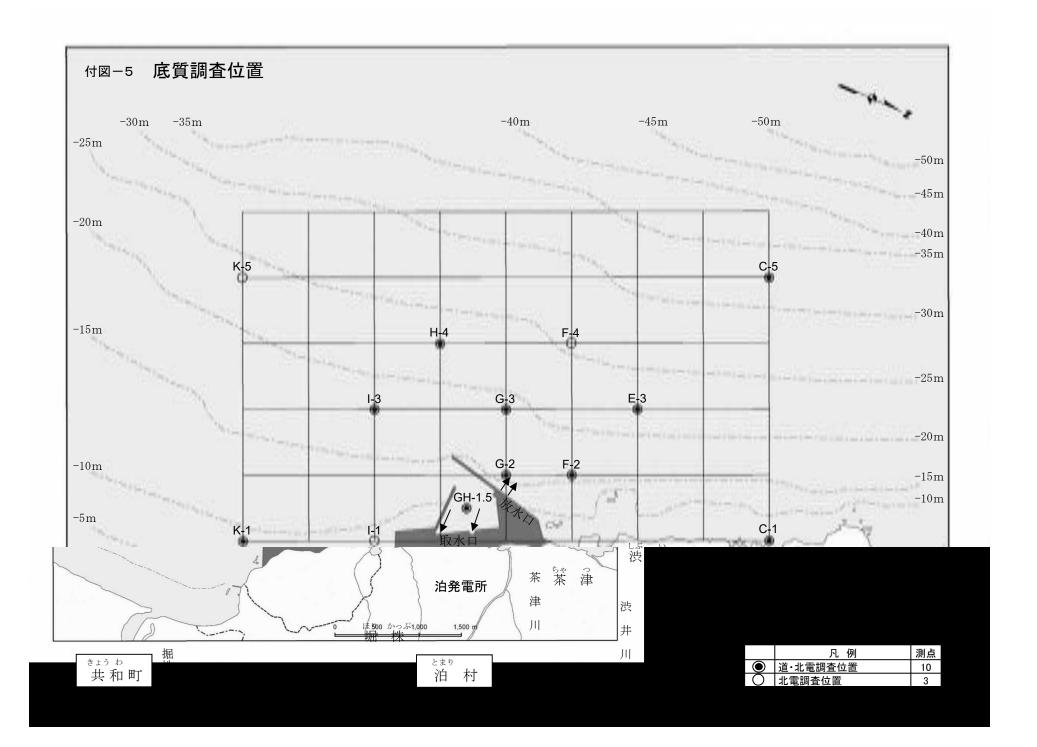
規格 K 0102:日本産業規格 K 0102「工業排水試験方法」

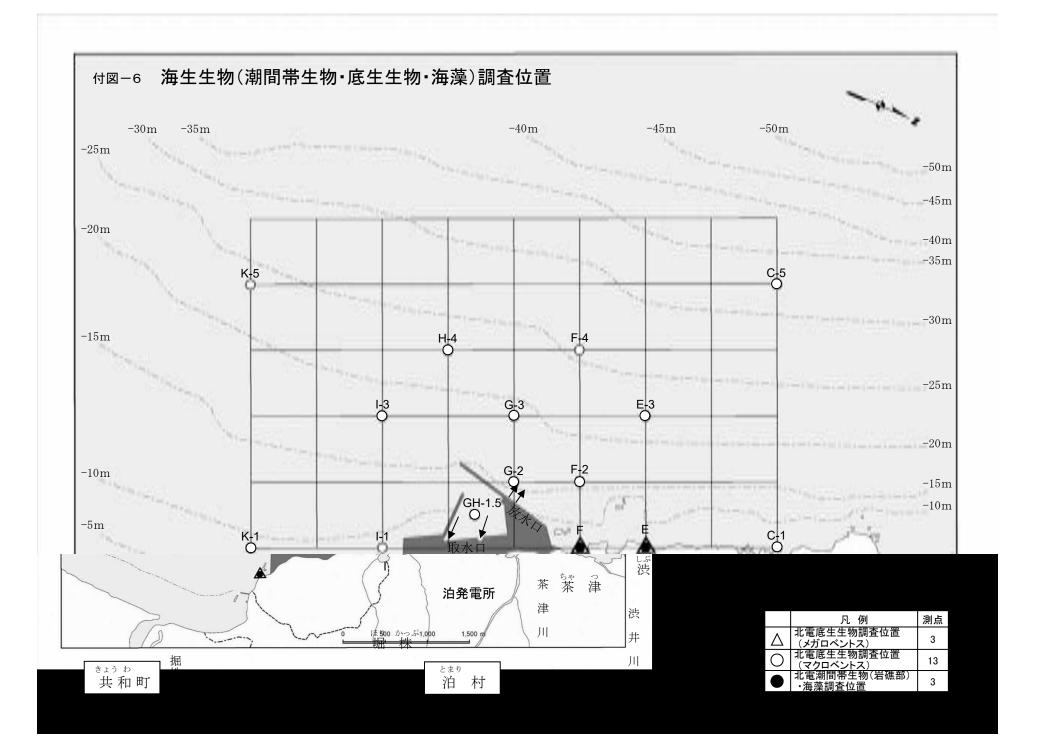

告 示 : 昭和46年12月28日 環境庁告示第59号「水質汚濁に係る環境基準について」

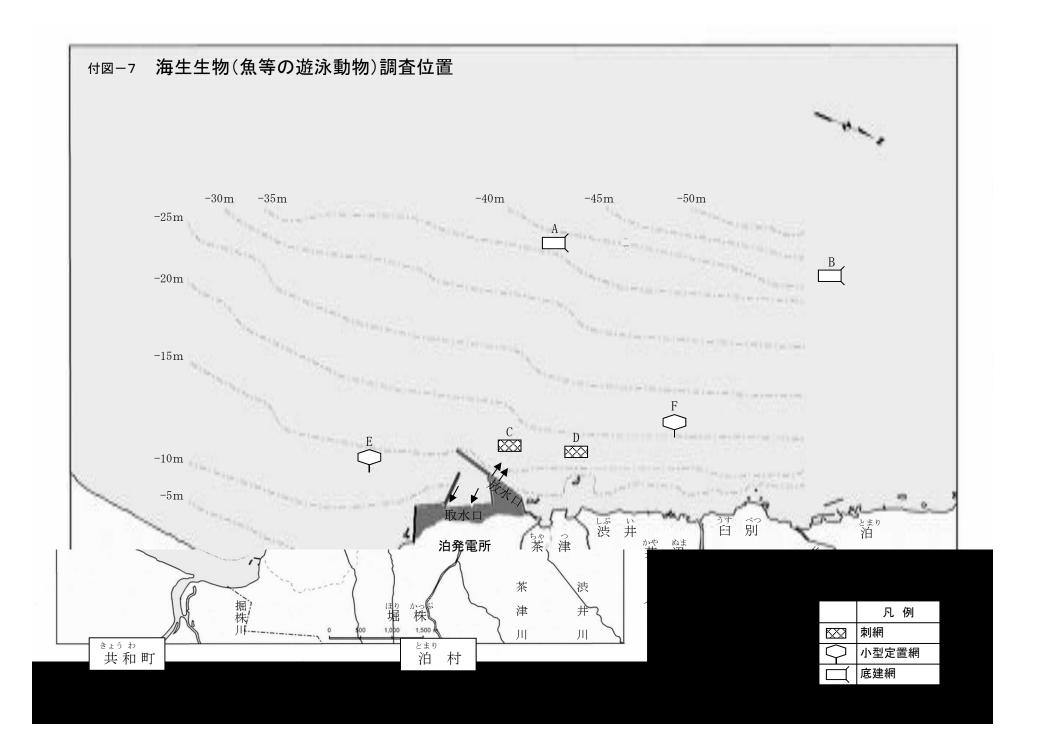

規 格 A 1204:日本産業規格 A 1204 「土の粒度試験方法」

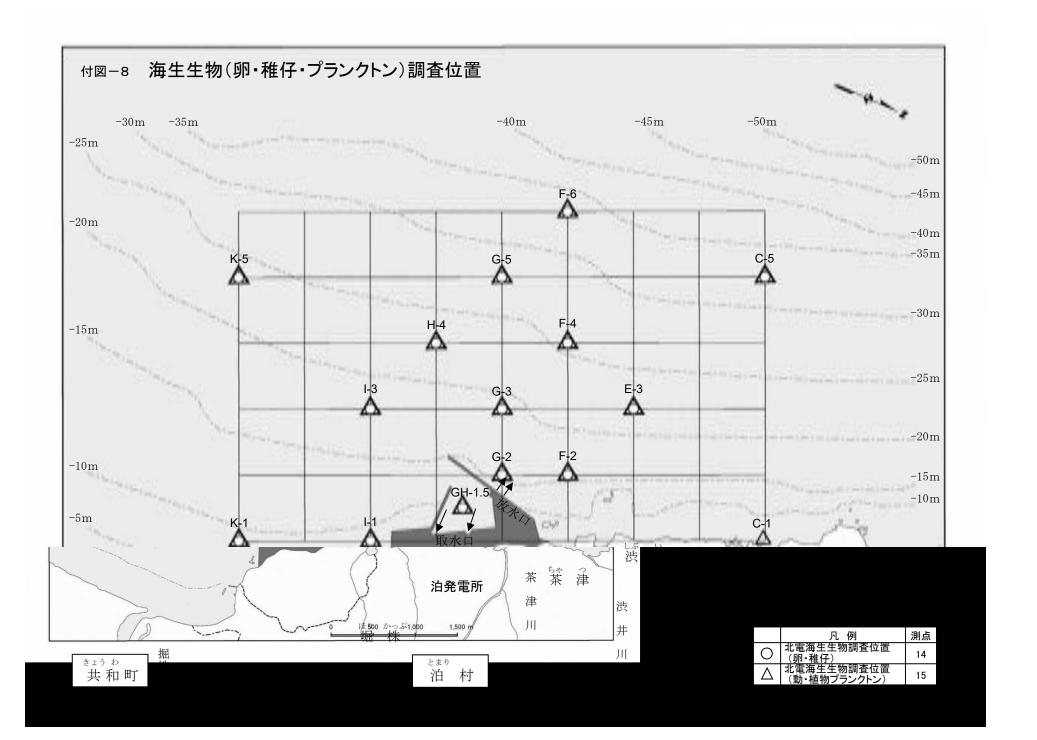

環水管第127号:昭和63年9月8日付け 環境庁水質保全局長通知 「底質調査方法の改定について」

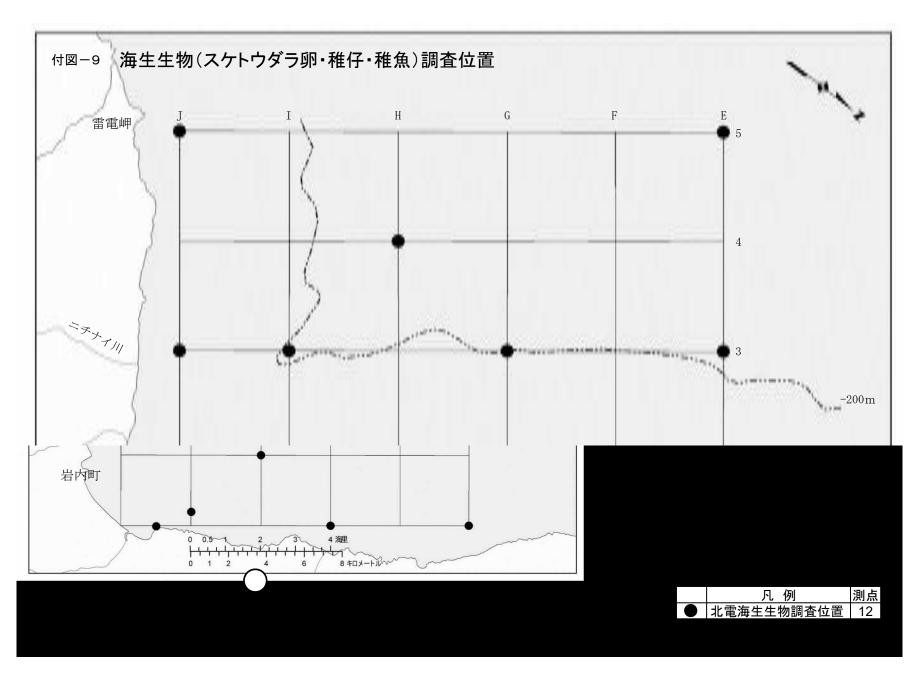

規格 K 0170:日本産業規格 K 0170「流れ分析法による水質試験方法」


4 付 図









泊発電所周辺温排水影響調査結果報告書 (令和2年度)

発 行 令和3年8月 発 行 人

北海道総務部危機対策局原子力安全対策課

問い合わせ先:環境安全係

〒060-8588 札幌市中央区北3条西6丁目

Tel: (011) 204-5012 (直通)

Fax: (011) 232-1101

○令和3年度 広報·調査等交付金事業 ○令和3年度 電源立地地域対策交付金事業